Software-Defined Fabrics for IoT at Scale

Alberto Leon-Garcia
University of Toronto
Scientific Director, NSERC SAVI Research Network
alberto.leongarcia@utoronto.ca
Context

- The Challenge
 - By 2050
 - Over 70% of world population will live in cities
 - Occupy 2% of landmass
 - Consume 75% of resources

- The Opportunity
 - To enable *livable and sustainable* cities and urban regions
 - economic, environmental, social

- Our Focus
 - Platforms to enable Smart City Applications
 - Converged Cloud computing, SDN, and IOT
IOT at Scale

- Requirements
 - Secure and Private
 - Responsive
 - Scalable
 - Cost-effective

Sensor and Actuator Gossamer
A Layered Architecture

SaaS
- Portal
- Custom KPIs
- Urban Planning
- Congestion pricing
- ... 3rd Party Apps

BaaS
- Analytics Engines
- APIs
- Publish/Subscribe Overlay
- Algorithmic Engines

PaaS
- Information-Centric Data Dissemination
- End-To-End, Multi Domain, Orchestration

SDI Resource Management
- SDI Manager
- Topology Manager
- Monitoring & Analytics

Cloud Controllers
(SD) Network Controllers
Access/Things Controllers

Multi-Tier Software Defined Infrastructure

Phys. Resources

Things (Sensors/Actuators)
vCPEs (Local Gateways)
Access (Wireless/Optical)
Smart Edges
Backbone Network
Cloud Data Centers

SAVI
Traditional ITS Data Flow

- **Road Authorities**
 - Traffic Cameras
 - Lane Usage Status

- **Transit Operators**
 - Bus Movement Information

- **Public Safety Agencies**
 - Accident Reports

- **Municipalities**
 - Construction Incidents

- **Environment Canada**
 - Weather Conditions

- **Road Sensors**
 - Road Conditions

Traffic Management Center
Supporting Public & Private Providers

Public App Provider:
- ITS Services

Private App Provider:
- Traveler Assistance
- Personalized Routing
- Fleet Management

Content-based Routing (Publish/Subscribe)

Clients (publisher/subscriber)

Control

Sensing

Intelligence
Demo: CVST Portal of Greater Toronto Area Traffic

- http://portal.cvst.ca
A Layered Architecture

SaaS
- Portal
- Custom KPIs
- Urban Planning
- Congestion pricing
- ...
 3rd Party Apps

BlaaS
- Analytics Engines
- APIs
- Publish/Subscribe Overlay
- Algorithmic Engines

PaaS
- Information-Centric Data Dissemination
- End-To-End, Multi Domain, Orchestration

Multi-Tier Software Defined Infrastructure
- SDI Resource Management
- SDI Manager
- Topology Manager
- Monitoring & Analytics

Cloud Controllers
- (SD) Network Controllers
- Access/Things Controllers

Phys. Resources
- Things (Sensors/Actuators)
- vCPEs (Local Gateways)
- Access (Wireless/Optical)
- Smart Edges
- Backbone Network
- Cloud Data Centers
Application-Enablement in Multi-tier Clouds

- Multi-Tiered Cloud: Core, Smart Edges, Access, vCPE, fog

- **Management of Software-Defined Multitier Cloud**
 - Computing, Networking, FPGAs, GPUs, Software-Defined Radio
 - Integrated real-time resource measurement and monitoring

- **Software-Defined Network Services**
 - Integrated secure networking over SDN and legacy networks

- **vCPE/Sensors**
 - virtual Customer Premises Edge (vCPE) and sensors, local resources at customer premises, managed from the Smart Edge

- **Application Platform**:
 - E2E orchestration of applications across federated infrastructures
 - Spanning core, Internet, smart edge, programmable access, and sensors
SAVI Testbed

- Cross-Canada Testbed; L2 backbone
- Federated with GENI in the USA, Two SAVI nodes in US, L2 connectivity
- One SAVI node in Korea
SAVI SDI Architecture & JANUS Manager

- Each resource type controlled by specialized controllers
- Each controller communicates with logically central C&M framework
- **SDI Manager, Topology Manager, and Monitoring and Analytics**
- Exposes open interfaces for external users and entities
Janus Network Control Module

- No Broadcast
- Routerless IP
- Non-IP Traffic

- Quality of Service
- NFV Service Chaining
- Security
Flexible Creation of Smart Apps on virtualized Customer Premises Edge

SAVI Smart Edge

- Integrated Management
- **Management Portal**
- **Apps**
- **Janus**
 - Orchestration
- **MonArch**
 - Monitoring/Analytics

Cloud + SDN

SAVI vCPE

- **Smart Home**
- **Private Network**
- **Video Streamer**
Small SAVI vCPE

- Supports compute and networking virtualization
- Able to host multiple applications
- Connected to the SAVI Smart Edge with VPN technology

- Has all the capabilities provided from the virtualized system in SAVI (e.g. tenant isolation)
- Capable of leveraging advanced Features of SAVI SDI (e.g. NFV Service Chaining)
SAVI vCPE Use Cases

- Gateway for Internet of Things devices
- Web acceleration and service delivery point
 - NFVs such as proxy, firewall, IDS/IPS and VPN services
- Smart home and office
- Connected vehicles
- Smart Transportation
- Smart Cities (lighting, air quality, … , carbon footprint)
Monitoring CO$_2$

- **Sensor nodes**: consists of a carbon dioxide sensor and radio module
- **Relay nodes**: responsible for forwarding any received packet toward the destination
- **Control Room**: destination of sensor data and data aggregation point
Research Agenda

- **IoT Virtualization**
 - Sensors, Actuators, Networks

- **SD Fabrics for City-Scale Infrastructure**
 - Virtual Slices: Core + Smart Edge + vCPE + vIoT
 - Synergy with fiber-based broadband access
 - Synergy with wireless access: LTE, 5G, and more

- **IoT-scale data gathering and dissemination**
 - Software-defined Information Centric Networking
 - Distributed storage, processing and aggregation
 - Security and Privacy
 - Low-latency and QoS where needed

- **Intelligence at Scale**
 - Distributed analytics and deep learning
Conclusion

- The SAVI multitier cloud based on SDI can provide flexibility, performance, scalability and cost effectiveness to support smart city applications.

- CVST application platform supports creation of smart transportation applications.

- Together SAVI & CVST provide a template for smart city application platforms.
Thank You!