
1

DP&NM Lab.
POSTECH- 1 -APNOMS 2003

Design and Implementation of
an XML-Based Management Agent

Design and Implementation of
an XML-Based Management Agent

Mi-Jung Choi, Jung-Min Oh and James W. Hong

Dept. of Computer Science and Engineering, POSTECH, Korea
{mjchoi, meanie, jwkhong}@postech.ac.kr

Abstract

As the Internet evolves, many network devices continue to emerge. Most of these network
devices are basically equipped with an SNMP agent and an Embedded Web Server (EWS) as a
management module. While both have drawbacks in network management, the drawback of
SNMP concerns configurability and, with EWS, the absence of a management information model.
To resolve these drawbacks, XML-based network management has been proposed as an
alternative. To maximize the advantages of XML-based network management, such as defining a
variety of management information by XML Schema and performing efficient configuration
management, both the manager and the agent must be able to process XML documents. Although
a few network device manufacturers such as Cisco and Juniper Networks have developed and
equipped XML-based agents on their own devices, they merely concentrate on configuration
management. In this paper, we propose the design and implementation of lightweight and efficient
XML-Based Management (XBM) agent. It is small and portable enough to be embedded in any
network device, and performs fault management, performance management, and configuration
management. We also verify the effectiveness of our XBM agent by comparing the performance
with an SNMP agent.

Keywords: XML, XML-Based Management, XML-Based Management (XBM) Agent, SNMP

2

DP&NM Lab.
POSTECH- 2 -APNOMS 2003

Introduction (1)
Combinations of Manager and Agent

Goals
– Propose requirements and an architecture of an XML-Based

Management (XBM) agent & Explain implementation detail
– Analyze & summarize the performance of XBM agent

XBM Agent
Device

SNMP Agent
Device

XBM Agent
Device

XBM Manager

XML/SNMP
Gateway

SNMP Manager XBM Manager

SNMP

XML/HTTP

(a) (b) (c) (d)

XML/HTTP

SNMP/XML
Gateway

XML/HTTP

SNMP

SNMP Agent
Device

SNMP Manager

SNMP

Web-MUI

XML/HTTP

Mgmt.
Appl.

The rapid pace of Internet evolution is currently witnessing the emergence of a variety of network devices. Most
of these network devices are basically equipped with an SNMP [1] agent and an Embedded Web Server (EWS) [2]
for system and network management. The SNMP management framework has been applied since 1988, and has
some weaknesses especially related to configuration management and the application development process to
manage huge networks [3]. EWS provides the Web user interface, but has difficulty in defining management
information due to the absence of a management information model. Therefore, it is insufficient for central
network management system, while it is adequate for providing management user interface to each device [4].

XML-based network management has been suggested as an alternative to solve the drawbacks of SNMP and
EWS. An Extensible Markup Language (XML) [5] provides powerful modeling features for structured
management information in network management using the XML Schema [6], and XML-based network
management can transfer and configure a large amount of configuration data over HTTP. Also, the XML-based
network management can be easily implemented using standard API and freely available XML software. The
management information written in XML document can solve the drawback of EWS, the absence of a management
information model.

As depicted in the above figure, four possible combinations between managers and agents can be considered for
XML-based integrated network management. (a) shows the current, widely deployed SNMP-based network
management, and (d) shows XML-based management using an XML-based manager and an XML-based agent.
The gateways shown in (b) and (c) translate messages and operations between different management schemes,
XML and SNMP. (d) is the most ideal framework to gain the maximum advantages of XML-based network
management. That is, to utilize the benefit of XML-based management [3, 4], the agent as well as the manager
must process XML.

The existing EWS can be extensible to an XML-Based Management (XBM) agent with additional XML
processing module because XML can be transferred through HTTP. Today, the CPU power and memory size of
network devices tends to be higher. However, XBM agent must be efficient and use as few resources as possible
because the management module is regarded as an additional functionality to the fundamental functionalities of
each device. In addition, it must guarantee stability and security in order not to interfere with the basic functions of
each device.

A few device manufacturers, such as Cisco and Juniper Networks, have developed and equipped XBM agents on
their devices, but unfortunately they merely concentrate on configuration management. The Cisco Networking
Services (CNS) Configuration Agent [7] of Cisco and the JUNOScript [8] of Juniper Networks are examples of an
XBM agent developed by a manufacturer. In this paper, we propose an XBM agent architecture by extending the
existing EWS architecture. It is small and portable enough to be embedded in any network device, and perform
fault management, performance management, and configuration management as well. We also explain the
implementation detail and performance test results of our XBM agent.

3

DP&NM Lab.
POSTECH- 3 -APNOMS 2003

Related Work (1)
XML-based Network Management
– Uses XML DTD or Schema for a management information model.
– Exchanges management data in the form of XML documents.
– Uses standard XML technologies for processing the data.
– Web-based Integrated Management Architecture (WIMA) :J.P. Martin-

Flatin, EPFL, 2000
– XML-based Network Management (XNM) : H. T. Ju, POSTECH, 2001
– IETF XML Configuration (XMLCONF) : apply XML technologies to

configuration management of IP based network devices, June 2002
– Integration SNMP with XML:

• Translation Models: J.P. Martin-Flatin, EPFL, 2000
– Model-level mapping & Metamodel-level mapping

• SNMP MIB to XML Schema mapping: J. H. Yoon, POSTECH, 2001
– Validated by developing an XML-based SNMP MIB browser.

• Library to access SMI MIB (libsmi): Frank Strauss, 2000
• XML/SNMP gateway: Y. J. Oh, POSTECH, 2002

– Provide interaction translation methods

XML-based network management (XNM) utilizes a Document Type Definition (DTD) [5] or XML Schema
[6] for management information modeling. It exchanges management data in the form of XML documents, and
processes data by utilizing open standard XML technologies. XNM provides technical advantages. First, the
XML Schema provides powerful modeling features for structured management information in network
management. XML-based network management can transfer a large amount of data over HTTP and
management data over HTTP can be compressed to reduce network traffic overhead.

J.P. Martin-Flatin proposed applying XML technologies to integrated management in his research on Web-
based Integrated Network Management Architecture (WIMA) [9], which describes the advantages of
XML/HTTP based communication and method of translation from SNMP MIB to XML. Our previous work
[10] describes an XML-based network management architecture with EWS previously embedded in many
existing devices. In this research, XNM extended the use of EWS for element management to network
management. In May 2003, IETF has formed a working group on Network Configuration (netconf) [11] to
apply XML technologies to configuration management of IP based network devices. They define the concepts
and requirements for network configuration management and provide guidelines for the use of XML within
IETF standards.

In addition, XML/SNMP gateway has been developed as an integration solution between XML-based
management and the existing SNMP management. J.P. Martin-Flatin, proposed SNMP MIB to XML translation
models, namely Model-level mapping and Metamodel-level mapping [9]. In Model-level mapping the DTD is
specific to a particular SNMP MIB (set of MIB variables), and the XML elements and attributes in the DTD
have the same names as the SNMP MIB variables. In Metamodel-level mapping the DTD is generic and
identical for all SNMP MIBs. Strauss presented a library to access SMI MIB information, “libsmi” [12], which
translates SNMP MIB to other languages, such as JAVA, CORBA, C, XML, etc. This library provides a tool
for MIB dump (mibdump), which allows dumping the content of a MIB module into an XML document.
Finally, our XML/SNMP gateway has achieved the specification translation [13] of SNMP SMI to XML
Schema and interaction translation as well [14].

4

DP&NM Lab.
POSTECH- 4 -APNOMS 2003

Related Work (2)
Existing XBM Agents
– Cisco’s CNS Configuration Agent

• Cisco Networking Services (CNS) Configuration Agents located on
Cisco ISO network devices

• Cooperates with Cisco Configuration Registrar, Web-based system for
automatically distributing configuration files to Cisco IOS network
devices

• Uses its own XML parser to interpret the configuration data from the
received configuration files

– Juniper Network’s JUNOScript
• Allows client applications to access operational and configuration data

using an XML-RPC
• Defines the DTDs for the RPC messages between client applications

and JUNOScript servers running on the devices
• Delivers the request to the appropriate software modules within the

device, encodes the response with JUNOScript tags, and returns the
result to the client application

Currently, device vendors such as Cisco and Juniper Networks have developed their own XBM agent and
equipped it on their devices. However, they merely concentrate on configuration management. In this section,
we explain the Configuration Registrar of Cisco [7] and the JUNOScript of Juniper Networks [8]

The Cisco Configuration Registrar [7] is a Web-based system for automatically distributing configuration
files to Cisco IOS network devices. It cooperates with Cisco Networking Services (CNS) Configuration Agents
located on each device. When a Cisco device is connected to a network and runs, the Configuration Registrar
delivers the initial configuration information to a CNS Configuration Agent. The Configuration Registrar uses
HTTP to communicate with the agent, and transfers configuration data in XML. The Configuration Agent in
the device uses its own XML parser to interpret the configuration data from the received configuration files.
This CNS Configuration Agent is a restricted form of an XBM agent responsible for configuration management,
which parses defined tags by Cisco.

Recently, Juniper Networks introduced JUNOScript [8] for their JUNOS network operating system. The
JUNOScript is part of their XML-based network management effort. It adapted a simple model and is designed
to minimize both development costs and the impact on the managed device. The JUNOScript allows client
applications to access operational and configuration data using an XML-RPC. The JUNOScript defines the
DTDs for the RPC messages between client applications and JUNOScript servers running on the devices.
Client applications can request information by encoding the request with JUNOScript tags in the DTDs and
sending it to the JUNOScript server. The JUNOScript server delivers the request to the appropriate software
modules within the device, encodes the response with JUNOScript tags, and returns the result to the client
application.

5

DP&NM Lab.
POSTECH- 5 -APNOMS 2003

Requirements
Basic functionality: exchanges management information in the form of
an XML document through HTTP
– EWS is a basic module for processing HTTP
– An XML processing module: XML parser, XPath handler
– Notification mechanism to send alarms to the manager

Additional functionality
– Scheduling methods for periodic monitoring data: agent sends periodic data

to the manager by itself
Non-functional requirements
– Low resource requirements: must use as little RAM, ROM, and CPU as

possible
– High reliability: highly reliable like one of the embedded system

components
– High portability: portable on various RTOS and embedded systems
– Security: limit access to sensitive information or configure & control

We present the requirements of the XBM agent that we must consider during development. The requirements are divided into
two parts – functional and non-functional.
Network management using an Embedded Web Server (EWS) is usually applied to simple device management where the

administrator connects to the EWS and manages the network device by exchanging management information through
HTML/HTTP. HTML is merely a natural language with display logic for the Web interface. An operator can understand the
meaning of management information by looking at the display of the Web browser. Nevertheless, it is almost impossible for
computer software to understand management information by the interpretation of HTML. Therefore, configuration
management information disseminated by EWS cannot be collected or processed by the manager application. Due to the
absence of a centralized management capability, management functions through the EWS have a difficulty in processing high
level network management such as data preservation, aggregation, and report generation. However, because XML allows us to
define the user-customized tag, it solves the absence of management information modeling by replacing HTML with XML [10].

An XBM agent is embedded in network devices and exchanges management information defined in the XML document
format with the manager through HTTP. Because the communication protocol is HTTP, it needs an EWS as a basic module.
The additional module to the existing EWS is an XML processing module which processes the XML document. The XML
processor module must parse the XML document including management information and access the specific part of the XML
document by recognizing the XPath expression.

Basically, the request and response of the EWS is client-driven, where the client (or manager) sends a request to the server
and the server responds. However, sometimes a network device needs to send a message to the manager without the request
driven by the manager. For example, the agent in a network device must occasionally send a notification message to the
manager, due to the error occurrence of network device status. That is, the XBM agent needs a notification mechanism to send
an asynchronous message to the manager.

In addition, periodic monitoring in network management usually uses a polling technology in the case of SNMP. The
manager requests management information periodically to the agent, and the agent responds. This polling mechanism is subject
to heavy processing overhead when producing many requests for periodic data from agents if one manager oversees many
agents. Moreover, a shorter monitoring period generates not only processing overhead but also heavy network traffic. To
alleviate this problem, the agent might also send periodic data to the manager by itself without requests from the manager. For
this architecture, the XBM agent needs a type of scheduler to decide the time to send the data. Therefore, the XBM agent
including the scheduler reduces the processing overhead of the manager, and effectively decreases network traffic for data
gathering.

Every network device has its own fundamental functionality to perform. Even though the performance of the network device
hardware is improving, the CPU and memory resources are still scare. Therefore, an XBM agent must be as small and efficient
as possible not to interfere with the main functionality of network devices. In addition, network devices require high reliability.
As an embedded component of a network device, the XBM agent must also be highly reliable. Because it is a subordinate
process, it must protect against the propagation of internal failure to the entire system at the very least.

Also, the network device varies and has several types of operation systems and processors. Therefore, the XBM agent must be
portable so that it can run on a much broader range of embedded system environments. Finally, it must provide security in the
network communication protocol and management access mechanism as well. Security is an important concern in network
management, specifically that which involves equipment configuration or administration. The XBM agent must protect network
device from being cracked by intentional network attacks. In short, the XBM agent must be small, efficient, portable, and secure.

6

DP&NM Lab.
POSTECH- 6 -APNOMS 2003

Design (1) – Management Information
Management Information Model: XML Schema
Management Protocol: HTTP

<xsd:element name="system">
<xsd:complexType>

<xsd:all>
<xsd:element ref="sysDescr" minOccurs="0"/>
<xsd:element ref="sysObjectID" minOccurs="0"/>
<xsd:element ref="sysUpTime" minOccurs="0"/>
<xsd:element ref="sysContact" minOccurs="0"/>
<xsd:element ref="sysName" minOccurs="0"/>
<xsd:element ref="sysLocation" minOccurs="0"/>
<xsd:element ref="sysServices" minOccurs="0"/>

</xsd:all>
</xsd:complexType>

</xsd:element>
<xsd:element name="sysDescr">
<xsd:complexType>

<xsd:simpleContent>
<xsd:restriction base="DisplayString_0_255">

<xsd:attribute name="access" type="xsd:string"
use="fixed" value="read-only"/>

</xsd:restriction>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>
…

X
B
M

A
G
E
N
T

X
B
M

A
G
E
N
T

Get //sysContact HTTP/1.1

X
B
M

M
A
N
A
G
E
R

X
B
M

M
A
N
A
G
E
R

Post //sysContact HTTP/1.1
<val op=‘set’>mjchoi@postech.ac.kr</val>

HTTP/1.1 200 OK
<sysContact> meanie@postech.ac.kr </sysContact>

HTTP/1.1 200 OK

HTTP/1.1 200 OK

Post //RFC1215_Trap HTTP/1.1
<trap>

<agent>141.223.82.230</agent>
<type>coldStart</type>
<time>….</time>

</trap>

We present the architecture of XBM agent for network management based on proposed requirements. First, we
explain management information model and communication protocol to manage network devices. Next, we describe the
XBM agent architecture.

XML provides two fundamental approaches to define the XML documents structure: DTD and XML Schema. DTDs
are used to specify a property for each element and a relationship between the elements. However, DTDs do not support
rich information modeling, so a new modeling mechanism, the XML Schema, is proposed. XML Schemas represent
various management information by adding new data types to a variety of data types (44 kinds of basic types), and
defining the document structure of management information. Therefore, the XML Schema is more suitable to define
management information. Basically, management information is SNMP MIB II that can be applied to all network
devices. Each node of SNMP MIB converts into an element of the XML Schema: the name of object into XML tag,
‘syntax’ into the data type definition, and ‘access’ into the attribute for example. The left figure shows an example of an
XML Schema in the system group of MIB II. This illustrates the XML Schema of the ‘sysDescr’ object of system group.

For information transmission, XML documents can be easily transferred by using an HTTP which is already equipped
worldwide. The management information of XML document transformed through HTTP over TCP. TCP for transport
protocol instead of UDP makes it possible to transmit reliable management data and large application-messages without
limitations in message size.

The operations of HTTP are Get and Post. The HTTP Get operation gathers management information from the agent,
and HTTP Post updates the management information. The response of HTTP Get is XML documents with management
information, and the response of HTTP Post includes the ‘HTTP/1.1 200 OK’ message. XPath is used for addressing
managed objects. A manager can query effectively about managed objects of agent through XPath. XPath expressions
are formed using the element name, attributes and built-in functions. In the Get operation, one or more values can be
retrieved depending on the parameters of XPath. Also, we can retrieve specific information with conditioning and
filtering.

The right figure illustrates a data exchange example of Get, Set (Post), Trap between an XBM manager and an XBM
agent. This shows a communication example of sysContact of system group in MIB II. Trap information is an example
of coldStart of SNMPv1 trap.

The XBM agent sends a notification to the XBM manager by a push mechanism using a Post operation [9]. For
supporting this mechanism, the XBM agent must include an HTTP client. Typically, some data needs to be cyclically
monitored within a certain time period. The XBM manager sends subscription information to the XBM agent. After
receiving the subscription information, the XBM agent schedules a series of message distributions and sends it to the
subscriber at the scheduled time through a Push mechanism using a Post operation. The management data transferred
periodically from the XBM agent to the XBM manager can reduce network overhead because it is not based on polling
[9]. Also, XML-based network management performs the basic management functionality through HTTP operations:
Get and Post, so it is not necessary to develop a new management protocol.

7

DP&NM Lab.
POSTECH- 7 -APNOMS 2003

Design (2) – Architecture

M
A
N
A
G
E
R

M
A
N
A
G
E
R

Managed System

EWS (HTTP Server Engine)EWS (HTTP Server Engine)

HTTP Client EngineHTTP Client Engine

Mgmt.
Script

Mgmt.
Script

XML
Processor

XML
Processor
SAX ParserSAX Parser

XPath HandlerXPath Handler
Write ModuleWrite Module

XBM Agent

SNMP
Agent

SNMP
Agent

Mgmt.
Backend
Interface

Mgmt.
Backend
Interface

Virtual
File System

Virtual
File System

Embedded
System

Application

Embedded
System

Application

XML/
SNMP

Gateway

XML/
SNMP

Gateway

HTTP

SNMP

SchedulerScheduler

Push
Handler
Push

Handler

The XBM agent needs an XML processor as a basic module in addition to EWS. This figure illustrates the architecture of an
XBM agent. The XBM agent includes an Embedded Web Server (EWS) [2] as a basic component. The components added to the
EWS are the XML Processor having a SAX Parser, which is an XML Parser, the Push Handler, and the HTTP Client Engine.
SAX parser does not support a write function; therefore, a Write Module is also necessary.

In previous work [4], we used DOM and XPath for handling the XML document in the agent as well as in the manager. DOM
and XPath are effective to process XML documents for accessing and filtering. The device we used to embed the XBM agent
was a Linux server, which posed no problems with the resource. However, supporting DOM and XPath requires extra memory
resources in the device. To access a part of an XML document, the DOM tree of the whole XML document is loaded into the
memory. This wastes CPU and memory resources in the device. Moreover, the code size of basic libraries widely used for
supporting DOM and XPath is big. Therefore, it is not suitable to apply DOM in embedded systems with few resources.

The code size and executable memory size of SAX is smaller than DOM [15]. As SAX is an event-driven mechanism for
accessing and processing XML documents, there is no need to load the entire XML tree to the memory. Therefore, SAX is
much lighter than DOM from the perspective of functionalities and resources. Though SAX can be lighter in resource usage
because SAX reads the XML document in sequential order and generates an event for a specific element, the processing time
for accessing XML document of SAX is slower than that of DOM after the DOM tree is generated. However, the management
information of most network devices is not immense and can be defined into several small XML documents containing
mutually related management data. Therefore, the processing time of the SAX parser matters little. The access method of SAX
is serial and read-only, so we add a Write Module as part of XML processor to provide a writing mechanism. Because we set a
greater value on low resource requirements, we selected SAX instead of DOM. The SAX Parser parses the XML document,
and selects the specified node when parsing, and reads management data. In order to send up-to-date information, the agent
gathers information from the Management Backend Interface. The Write Module updates the node value for the selected node
through the Management Backend Interface before replying to the manager.

To send a notification to the XBM manager, the XBM agent needs a Push Handler and HTTP Client Engine as well as an
XML Processor module. Also, to send periodic management information to XBM manager at a fixed time with one schedule
request, the XBM agent needs a Scheduler. The HTTP Client Engine delivers asynchronous messages to the XBM manager for
reporting alarm and distributing management data according to the schedule. The Scheduler manages subscription information
and the schedule for the distribution of the management information. Subscription information includes the subscriber’s URL
for receipt (subscriber information), managed object’s XPath expression (management item), and schedule information
containing the start time, the end time, and interval. The Push Handler receives the request from the Scheduler and sends the
scheduled data to the manager through the HTTP Client at the scheduled time. Also, the Push Handler sends a notification
generated in the agent, which is sent to the manager through the HTTP Client.

If an SNMP Agent is also available in the managed network device, the same Management Backend Interface can be used.
This reduces memory usage. The XBM manager communicates with the SNMP Agent through the XML/SNMP gateway [13,
14].

8

DP&NM Lab.
POSTECH- 8 -APNOMS 2003

Implementation (1) –Get/Set

XML
filename

modified
XPath

XML
document

XPath

XBM
Manager

HTTPS

: Get
: Set

EWS
(HTTP
Server
Engine)

EWS
(HTTP
Server
Engine)

HTTP
Client
Engine

HTTP
Client
Engine

Mgmt.
Script

Mgmt.
Script

Mgmt.
Backend
Interface

Mgmt.
Backend
Interface

xmlOpen()xmlOpen()

getXpath()getXpath()

parseXml()parseXml()

returnXml()returnXml() setXml()setXml()

xmlClose()xmlClose()

Get/Set

XML
document

parsed XML
document

mgmt. data
(Get)

mgmt. data
(Set)

XML
document

HTTP OK

We have implemented an XBM agent to manage an IP sharing device based on the XBM agent design presented in slide 9. Moreover,
we focused on the implementation of an efficient and lightweight XBM agent by considering such requirements as low resource utility
(CPU usage and memory size).

In addition, for portability to equip any type of embedded system, we used the C programming language throughout agent
implementation and developed components per each module. From the security aspect, to control the access of management
information, the access to the XBM agent is permitted through the authentication with ID and password in the initial contact. Also, we
used the HTTPS protocol for secure communication between the XBM manager and agent.

The IP sharing device equipped with our XBM agent runs on an embedded Linux based on linux2.2.13-7 kernel using Motorola’s
MPC850DE processor with 16MB ROM. We used a powerpc-linux-gcc compiler.

The main function of the XBM agent is to retrieve and update management information according to the manager’s request of Get/Set
operation. Also, the XBM agent delivers periodic monitoring data to the manager by performing the scheduler according to the
manager’s request of scheduling. Figure 5 illustrates the function call for the flow of Get/Set process of the XBM agent.

The process of the Get operation in XBM agent is as follows. The Get request from the manager calls the Get module through Mgmt.
Script with two parameters: XML filename, and XPath expression. The value of XML filename is used as the parameter of the
xmlOpenI() function for opening the appropriate XML document, the value of XPath is the parameter of the getXpath() function which
returns the structure type of XPath to utilize in next phase. The XML document from xmlOpen() and XPath returned from getXpath()
input into the parseXml() function as parameters. The parseXml() parses the XML document through the XPath grammar. The real
management value is retrieved through the call of Mgmt. Backend Interface, then the XML document is updated with this value using
the setXml() function. The parsed XML document is sent to returmXml() and backtracks to Mgmt. Script as string format. Finally, the
xmlClose() function closes the previously opened XML document.

The process of Set operation is almost equal to the Get operation. The Set module opens the XML document and retrieves the specific
XML document part by applying XPath expression as a Get operation, then modifies the XML document calling setXml(), and updates
the real value through Mgmt. Backend Interface. Afterwards, it generates the XML document from the result of Set operation and calls
returnXml() function. The returned result to Mgmt. Script is the response of Set operation, ‘HTTP OK’ message.

In this figure, the getXpath() function is the XPath Handler module processing XPath. Currently, XPath supports various syntaxes.
However, if the XPath expression is complex, the processing time is slow [16], and the XPath Handler supporting full XPath grammar
[17] is heavy. This does not meet the requirements of low resource utility. Therefore, we implemented a part of XPath grammar
sufficient to accessing the XML document of management information in the XBM agent. Moreover, we implemented the XPath
Handler to access the specific management information applying XPath expression during the parsing without loading the XML
document into memory. Table 1 shows the XPath grammars which we implemented in our XBM agent. We implemented the XPath
Handler considering the extensibility supporting more XPath syntaxes. It is desirable to extract management information using simple
XPath expression considering the processing time.

In this figure, the parseXml() function, which reads XML document in sequential access and applies XPath expression, is the core
module of SAX Parser. This parses the XML document from the root element to its child element, retrieves the element name and
attributes, and compares the retrieved values to XPath expression processed by the getXpath() function, then if the comparison result is
equal, the values are sent to the next function. The setXml() function is for the Write Module. In the case of a Set request, if the Set
operation needs to update the value, this function modifies the XML document after parsing the document that applies the XPath
expression.

9

DP&NM Lab.
POSTECH- 9 -APNOMS 2003

Implementation (2) – Trap/Scheduler

XBM
Manager

HTTPS

EWS
(HTTP
Server
Engine)

EWS
(HTTP
Server
Engine)

HTTP
Client
Engine

HTTP
Client
Engine

Mgmt.
Script

Mgmt.
Script

Push
Handler
Push

Handler runWget()runWget()

timerHandler()timerHandler()

deleteJob()deleteJob()

checkJob()checkJob()

insertJob()insertJob()

XML
doc.

no. of
jobs

Scheduler

job list
file

Mgmt.
Backend
Interface

Mgmt.
Backend
Interface

getJob()getJob()

mgmt. data
getData()getData()

trap
info. genXmlTrap()genXmlTrap()XML

doc. Trap

This figure describes the process of the Scheduler for delivering periodic data to the manager at the scheduled
time and Trap for sending a notification to the manager. If the Scheduler receives a scheduling request from the
manager, it updates the job list file. The Scheduler processes the job with pthreads. In the initial start, the
Scheduler runs the getJob() function, and this function reads the job list file and retrieves the job contents.

As mentioned in the scheduler part in the slide 9, the job list file includes subscriber information, the
management item, and schedule information containing start time, end time, and interval. The checkJob()
function receives the number of jobs and the job list from getJob(), and compares the existing pthreads
information to new job list. According to the comparison results, the checkJob() generates the new job thread
calling insertJob(), or destroys the existing job thread calling deleteJob(). The generated thread having the same
time interval as the parameter checks the schedule calling timerHandler() and runs the runWget() function at the
scheduled time. The runWget() function calls the Push Handler, then the processed management information is
sent to the manager through an HTTP Client Engine called Wget. A notification from the Mgmt. Backend
Interface is sent to genXmlTrap() function in the Trap module. This function generates an XML document
containing the trap information and calls the runWget() function. Trap information is delivered to the manager by
this mechanism.

10

DP&NM Lab.
POSTECH- 10 -APNOMS 2003

Performance Test (1)
Verify the performance of XBM agent by comparing it
with the SNMP agent on the same IP sharing device
SNMP agent extends the Net-SNMP and supports only
SNMPv1
CPU load, run-time memory usage, and executable code
size

Agent CPU load
Run-time
memory
usage

Executable
code size

SNMP
(Net-SNMP) 17 % 600 KB 400 KB

XBM 20 % 700 KB 550 KB

< Resource Utility of SNMP and XBM Agent >

We verify the performance of our XBM agent by comparing it with the SNMP agent on the same IP sharing
device. We compare resource utilities, such as CPU load, run-time memory size, and executable code size. We
also compare the generated network traffic of each agent between the manager and the agent. Moreover, we
measure how much network traffic is reduced by a scheduling and push mechanism for periodic monitoring.
Finally, the processing time of our XBM agent against the traditional SNMP agent is measured with the response
time upon Get/Set requests between the manager and the agent.

This table compares the SNMP agent and the XBM agent in terms of CPU load, run-time memory usage, and
executable code size. This information is discovered by the Linux command such as top, cpuload, etc., and the
status data in proc directory generated during the run-time of the process daemon. Both the XBM agent and the
SNMP agent provide SNMP MIB II information. The SNMP agent extends the Net-SNMP and supports only
SNMPv1. Currently, most network management systems (NMS) use the GetNext operation of SNMPv1. The
users of NMS want to know the comparison of SNMPv1 agent. Therefore, we test the performance of the
SNMPv1 agent.

From the above table, we can determine that our XBM agent does not take more resources than the SNMP
agent. While the XML parser is generally considered to consume much resources and is insufficient in
application to the embedded systems, our XBM agent is lightweight enough to equip in network devices and
perform network management functionality.

11

DP&NM Lab.
POSTECH- 11 -APNOMS 2003

Performance Test (2)

Network traffic (MIB II – system, interfaces group)

Management
property

Get request message
(bytes)

Get response message
(bytes)

SNMPv1 XBM SNMPv1 XBM

sysDescr 82 238 145 240

sysContact 82 240 103 190

system Group 572 241 722 624
inOctets
(2 interfaces) 169 240 175 252
outOctets
(2 interfaces) 169 241 176 256

interfaces Group 3720 241 3818 1654

< Message Size of Get >

This table shows the network traffic of each agent between SNMP agent and manager, and between XBM
agent and manager in terms of system group and interface group of MIB II information. We captured packets and
those sizes between each manager and agent by network traffic monitoring tool, Ethereal.

In the case of requests for one object in this table, we can easily determine the smaller size of the Get request
message and response message of the SNMP agent because it is aimed to serve the network management
protocol. However, the XBM agent uses the HTTP protocol, so increases network traffic for each information
access over SNMP. Conversely, for a grouped request, the XBM agent produces less network traffic than the
SNMP agent because the SNMP agent requests several GetNext operations and receives responses for every node,
while the XBM agent retrieves the whole system group or interfaces group information in one request using an
HTTP message. Moreover, the difference is outstanding in the case of the interfaces group because it includes
more managed objects. Most cases of Get or Set operations for management information request multiple data at
once. Therefore, the XBM agent produces less network traffic than the SNMP agent in this case.

The response time of the Get/Set request is measured by the time() function call from the request initiation to
response reception. From the response time, the SNMP agent takes an average 40 ms and XBM agent average
60ms for accessing each leaf node in system group in MIB II. The SNMP agent takes 160 ms, while XBM agent
180ms for retrieving the system group. In the case of in/out octet value in the interfaces group, the SNMP agent
takes about 80ms and the XBM agent 110 ms. For the interfaces group, the SNMP agent takes 700 ms, while the
XBM agent 760 ms. The response time of the Set request is almost the same as that of the Get request in both the
SNMP agent and XBM agent. These data do not show a significant difference in the response time between them.
Therefore, the XBM agent achieves a good performance enough for processing XML documents. As a result, the
XBM agent is small and efficient as the SNMP agent in terms of resource utilization and processing time. In
addition, the XBM agent gives outstanding network traffic reduction to access much information in a limited
time.

Regarding in/out octets to monitor periodic network traffic for devices with two interfaces, the SNMP creates a
request message of approximately 169 bytes to each in/out octet information and a response message of
approximately 175 bytes. However, the XBM agent receives request message of 600 bytes to set schedule
information in the initial time and sends only message of 252 bytes periodically to the manager. If the period is
shorter and the manager has many devices to monitor, the scheduler mechanism in the XBM agent achieves a
more effective network traffic reduction. The manager can reduce processing overhead to generate Get request
messages for periodic monitoring.

12

DP&NM Lab.
POSTECH- 12 -APNOMS 2003

Concluding Remarks
• Presented the design and implementation of an XBM agent
• Verified the functionality of our XBM agent by applying it to the

IP sharing device
• Showed low resource usage and less network overhead from the

performance test results compared with the SNMP agent

• Future work
– Augment additional parser functions according to management information

complexity
– Enhance SAX Parser and XPath Handler by surveying the necessary XPath

expressions
– Evaluate the performance of each module in the XBM agent, and improve

the response time
– Identify the scalability of the XBM manager when it communicates with

many XBM agents

In this paper, we presented the design and implementation of an XBM agent which uses XML/HTTP to communicate with the
manager to take maximum advantage of XML-based network management. We have focused on the stability and the efficiency of
resource utilization, so that it can be embedded and run in a network device.

We have verified the functionality of our XBM agent by applying it to the IP gateway (a commercial Internet sharing device), and
showed low resource usage and less network overhead from the performance test results. This result showed almost the same
performance and resource usage compared with the existing management paradigm, SNMP agent. In other words, we successfully
verified that our XBM agent is designed and implemented as efficient and lightweight enough to decrease the overhead of XML
processing and be embedded in any network device. Moreover, the XBM agent is more efficient than the SNMP agent in terms of
network traffic.

Our future work in XBM agent development is to augment additional parser functions according to management information
complexity, enhance SAX Parser and XPath Handler by surveying the necessary XPath expressions. We will evaluate the performance
of each module in the XBM agent, and improve the response time. We intend to identify the scalability of the XBM manager when it
communicates with many XBM agents simultaneously and compare it with that of SNMP-based management.

References
[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin (Eds.), “A Simple Network Management Protocol (SNMP)”, RFC 1157, IETF, May 1990.
[2] M. J. Choi, H. T. Ju, H. J. Cha, S. H. Kim, and J. W. Hong, “An Efficient and Lightweight Embedded Web Server for Web-based Network Element Management”, Proc.
IEEE/IFIP Network Operations and Management Symposium (NOMS 2000), Hawaii, USA, April 2000, pp. 187~200.
[3] F. Straus, and T. Klie, “Towards XML Oriented Internet Management”, Proc. IFIP/IEEE International Symposium on Integrated Network Management (IM 2003),
Colorado Springs, USA, March 2003, pp.505~518.
[4] H. T. Ju, “Embedded Web Server Architecture for Web-based Element and Network Management”, Ph.D. Thesis, POSTECH, February 2002.
[5] Tim Bray, Jean Paoli and C. M. Sperberg-McQueen, “Extensible Markup Language (XML) 1.0”, W3 Recommendation REC-xml-19980210, February 1998.
[6] W3C, “XML Schema Part 0,1,2”, W3 Consortium Recommendation, May 2001.
[7] Cisco Systems, Cisco Configuration Registrar, http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/ie2100/cnfg_reg/index.htm.
[8] P. Shafer and R. Enns, “JUNOScript: An XML-based Network Management API”, http://www.ietf.org/internet-drafts/draft-shafer-js-xml-api-00.txt, August 27, 2002.
[9] J.P. Martin-Flatin. “Web-Based Management of IP Networks and Systems”, Ph.D. Thesis, Swiss Federal Institute of Technology (EPFL), October 2000.
[10] H. T. Ju, M. J. Choi, S. H. Han, Y. J. Oh, J. H. Yoon, H. J. Lee, and J. W. Hong, “An Embedded Web Server Architecture for XML-based Network Management”, Proc.
IEEE/IFIP Network Operations and Management Symposium (NOMS 2002), Florence, Italy, April 2002, pp.1~14.
[11] IETF, “Network Configuration (netconf)”, http://www.ietf.org/html.charters/netconf-charter.html
[12] Frank Strauss, “A Library to Access SMI MIB Information”, http://www.ibr.cs.tu-bs.de/projects /libsmi/.
[13] J. H. Yoon, H. T. Ju, and J. W. Hong, “Development of SNMP-XML Gateway for XML-based Integrated Network Management”, Accepted to appear in the International
Journal of Network Management (IJNM), 2003.
[14] Y. J. Oh, H. T. Ju, M. J. Choi, J. W. Hong, “Interaction Translation Methods for XML/SNMP Gateway”, Proc. DSOM 2002, Montreal Canada, October 2002, pp. 54~65.
[15] Devsphere, “XML Parsing Benchmark”, http://www.devsphere.com/xml/benchmark/index.html.
[16] Georg Gottlob, Christoph Koch, and Reinhard Pichler. “XPath Query Evaluation: Improving Time and Space Efficiency”, Proc. 19th International Conference on Data
Engineering (ICDE 2003), Bangalore, India, March 2003.
[17] ZVON Org, “XPath Tutorial”, http://www.zvon.org/xxl/XPathTutorial/General/examples.html.

