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Abstract. This paper presents the design of a next generation network traffic 
monitoring and analysis system, called NG-MON (Next Generation 
MONitoring), for high-speed networks such as 10 Gbps and above. Packet 
capturing and analysis on such high-speed networks is very difficult using 
traditional approaches. Using distributed, pipelining and parallel processing 
techniques, we have designed a flexible and scalable monitoring and analysis 
system, which can run on off-the-shelf, cost-effective computers. The 
monitoring and analysis task in NG-MON is divided into five phases; packet 
capture, flow generation, flow store, traffic analysis, and presentation. Each 
phase can be executed on separate computer systems and cooperates with 
adjacent phases using pipeline processing. Each phase can be composed of a 
cluster of computers wherever the system load of the phase is higher than the 
performance of a single computer system. We have defined efficient 
communication methods and message formats between phases. Numerical 
analysis results of our design for 10 Gbps networks are also provided. 

1 Introduction 

Today, multi-gigabit networks are becoming common within or between ISP 
networks. The bandwidth of ISP’s backbone networks is evolving from OC-48 
(2.5Gbps) to OC-192 (10Gbps) to support rapidly increasing Internet traffic. Also, 
Ethernet networks are evolving from gigabit to 10 Gbps. Further, the types of traffic 
on these links are changing from simple text and image based traffic to more 
sophisticated and higher volume (such as streaming rich media, peer-to-peer). 
Monitoring and analyzing such high-speed, high-volume and complex network traffic 
is needed, but it lies beyond the boundaries of most traditional monitoring systems. 

Sampling is a popular method that most monitoring systems adopted to overcome 
this problem [1]. However, the sampling method is neither accurate nor adequate for 
some applications (e.g., usage-based billing or intrusion detection system). Another 
approach is by the adoption of purpose-built hardware [2]. Unfortunately, the 
development cost of such hardware approach is very high, and the hardware can get 
outdated quickly. ISPs would be required to replace them to meet the requirement as 
the network bandwidth increases. Therefore, we need a solution that is flexible, 
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scalable, and cost-effective. 
This paper suggests the design of such a solution. In our earlier work, we had 

developed a passive network traffic monitoring system, called WebTrafMon [3, 4]. It 
could monitor 100 Mbps links and was able to capture packets without any loss. When 
we used it to monitor faster links than 100 Mbps, we encountered several problems. 
The amounts of incoming packets were beyond the processing capacity of the probe. 
And the required storage space for flow data increased linearly as the link speed 
increased. Also, the analyzer took a long time to complete its tasks. 

So, we had to come up with a new approach to solve the problem. At first, we 
subdivided the monitoring process into multiple phases, and distributed the processing 
load over them by allocating a system for each phase. If the distributed load in each 
phase is still beyond the capability of the system, it can be composed of a cluster of 
systems. By using this approach, we have designed a flexible and scalable network 
traffic monitoring and analysis system, called NG-MON (Next Generation 
MONintoring). NG-MON uses the passive monitoring method. 

The organization of this paper is as follows. The requirements of the NG-MON are 
enumerated in Section 2 and the design of NG-MON is described in Section 3. 
Numerical analysis results of our design for 10 Gbps networks are provided in Section 
4. In Section 5, we compare our approach with other approaches proposed thus far. 
Finally, concluding remarks are given and possible future work is mentioned in 
Section 6. 

2 Requirements 

The following are the requirements we have considered in designing NG-MON. 
 

Distributed architecture: With a single general purpose PC system, it is hard to 
monitor and analyze all the packets on a multi-gigabit network. So it is required to 
divide monitoring task into several functional units and distribute processing loads. 
With respect to the distribution method, we considered the pipelined and parallel 
methods. And we also considered the packet distribution by using the functions which 
are provided by network devices. 

 
Lossless packet capture: We need to capture all packets on the link without any loss 
so to provide required information to various applications. 

 
Flow-based analysis: When analyzing, it is better to aggregate packet information 
into flows for efficient processing. By doing this, packets can be compressed without 
any loss of information. 

 
Consideration of limited storage: The amount of captured packets in high-speed 
networks is more than hundreds of megabytes per minute even though being 
aggregated into flows [2]. An efficient method is needed for storing these large 
amounts of flows and analyzed data in the limited storage. 

 



Support for various applications: It should be flexible enough to provide data to 
various applications in diverse forms. When a new application needs to use the system, 
it should be able to easily support the application without changing the structure of the 
system. 

3 Design of NG-MON 

In the design of NG-MON, the key features we have employed are pipelined 
distribution and load balancing techniques. In Fig. 1, traffic monitoring and analysis 
tasks are divided into five phases: packet capture, flow generation, flow store, traffic 
analysis, and presentation of analyzed data. 
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Fig. 1. Pipelined Architecture of NG-MON 

 These five phases are serially interconnected using a pipelined architecture. One 
or more systems may be used in each phase to distribute and balance the processing 
load. Each phase performs its defined role in the manner of a pipeline system. This 
architecture can improve the overall performance. And each phase is configured with a 
cluster architecture for load distribution. This provides good scalability. We have also 
defined a communication method between each phase. Each phase can be replaced 
with more optimized modules as long as they provide and use the same defined 
interface. In the following sections, we describe each phase in detail. This gives 
flexibility. Rather than using expensive server-level computers, we use inexpensive, 
off-the-shelf PC-level computers. Since our solution is all software-based, as more 
processing power is needed one can simply replace existing hardware or add more to 
wherever is needed. We believe this is a very cost-effective and scalable approach.  

3.1 Packet Capture 

In the packet capture phase, one or more probe machines (or packet capturer) 
collect the entire raw packets passing through the network link. By using the splitting 
function provided by an optical splitter [5], all the packets on the link are directed 
toward probe systems as illustrated in Fig. 2. We can also use the mirroring function 



provided in network devices such as switches and routers for distributing traffic to 
multiple probes. Each probe processes incoming packets and keeps the minimum 
packet header information that we are interested in. In Fig. 2, the output of each probe 
is a collection of the packet header information that is derived from raw packets. 

Probe #1
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Probe #3
Network Link

Splitting Device

devided raw packet pkt header message  

Fig. 2. Packet Distribution and Packet Capture 

A single off-the-shelf PC cannot process all the packets coming from the high-
speed links such as 10 Gbps networks due to performance limitations [6]. It is 
essential to use multiple systems for capturing all the packets without loss. Although 
processing loads are distributed, the packets in the same flow can be scattered. Each 
probe has as many export buffer-queues as the number of flow generators. Each export 
buffer-queue is for flow generators. The probe fills the buffers with header 
information using the 5-tuple based hashing over export buffer-queues. When this 
buffer-queue is full, the probe constructs a message containing captured packet 
headers and then sends it to the next phase, the flow generator. The destination of the 
constructed message is assigned among the addresses of flow generators as to the 
buffer-queues. Therefore, temporally scattered packets in the same flow would be put 
together and sent to the same flow generator. One message is composed of up to 50 
packet header information. The format of raw packet header data is given in Fig. 3. 
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Timestamp 
Source Address 

Destination Address 
Source Port Destination Port 
Packet Size Ether_Type 

Flag and Offset IP Identification 
Protocol Number ToS TCP Flags Capture ID 

Fig. 3. Packet Header Data Format 

The size of packet header data kept is 28 bytes for each packet. All the fields 
except Timestamp and Capture ID are extracted from IP and TCP/UDP headers of 
each packet. The Timestamp indicates the time when a packet is captured by a probe. 
The Capture ID indicates the system, which captured that packet for later use. 



3.2 Flow Generation 

There are various definitions about the flow [7, 8, 9]. In this paper, we use the 
traditional one, which defines the flow as a sequence of packets with the same 5-tuple: 
source IP address, destination IP address, protocol number, source port, and 
destination port.  
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Fig. 4. Load Distribution in the Flow Generation Phase 

In Fig. 4, the messages from the packet capture phase are distributed over flow 
generators by assigning their destinations to the corresponding flow generators. 

A flow generator stores the flow data in its memory area for processing. When a 
message containing raw packet data arrives, the flow generator searches the 
corresponding flow data from its flow table and then updates it, or creates a new flow 
if one does not already exist. Packets in the same flow are aggregated into the same 
entry of the table by increasing the packet count and adding the length to the total 
packet size. The flow generator exports the flow data to the flow store when one of the 
following conditions is satisfied: when the flow is finished (if TCP, when a FIN packet 
received), the time has expired or the flow table is filled. 
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Fig. 5. Flow Data Format 

The flow data format is given in Fig. 5. Besides the 5-tuple information, the flow 
data has several other fields such as flow start time and flow end time. The flow start 
time indicates the time when the first packet of a flow is captured by a probe, and the 
flow end time means the capture time of the last packet of the flow. The size of the 
flow data format is 32 bytes. For our flow generator, it can send up to 40 flows in a 
single message of approximately 1350 bytes. 



3.3 Flow Store 

In our earlier work [4], we realized that one of the bottlenecks of the monitoring 
process is a storing of flow data. Therefore, when the flow data is stored to the flow 
store, the load balancing should be considered. In Fig. 6, the destination of the 
exported messages is assigned among the flow stores in turn by a round-robin 
algorithm. The assigning period is determined by the transfer rate of export flow data, 
capabilities of the flow stores, and the number of flow stores. In this way, the 
processing load to store the flow data is distributed over the flow stores. 
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Fig. 6. Load Distribution in the Flow Store Phase 

When several flow generators assign a destination flow store of the messages, 
there can be a time synchronization problem. But the components of NG-MON would 
tend to be deployed in a local area network, thus the required degree of time 
synchronization is not so high. Therefore, the time synchronization protocol like NTP 
[10] can be used to synchronize the system clocks of the components. 

In our system, we separate write (i.e., insert) operations from database query 
operations performed by the analyzers. Insertion does not occur at the same time as 
other operations in a single flow store. Thus, traffic analyzers query databases of flow 
stores when they are not receiving flow data. An example is illustrated in Fig. 6. At 
time t1, the flow store #1 receives flow data from flow generators and the flow stores 
#2 and #3 process the query from traffic analyzers. That is, the flow store concentrates 
on operation requests of one side at a time. Flow stores discard the flow data table 
when they are finished with analysis by traffic analyzers. Only the most recent flow 
data is stored in the flow store, so the flow store only requires a small, fixed amount of 
disk space. 

There can be various traffic analyzers for supporting various applications after the 
flow store phase. This means that the flow store should provide an analysis API to 
analyzers. 



3.4 Traffic Analysis 

In this phase, the traffic analyzer queries the flow data stored in the flow store 
according to the various analysis scopes. The analyzer sends query messages to the 
flow stores and makes various matrices and tables from the response. If all the scope 
of analysis is put into one table, the size of a single table will be too large to manage. 
Therefore, we place several reduced set of tables corresponding to each analysis scope. 
For example, the analyzer in Fig. 7, provides the details on network throughput with 
protocol and temporal analysis. And in order to provide temporal analysis, the 
analyzer has a set of tables according to every time-unit of minute, hour, day, month, 
and year. It is impractical to store all the flow data into the time-series tables because 
of voluminous data, and limitation of storage space. To reduce the storage requirement, 
we preserve tables with only the most significant N entries. Thus, the total size of 
database will have some degree of boundary. The analyzer fills up the tables 
simultaneously in a pipelined manner. If the reception time period of flow stores is 5 
minutes, there can be 20 tables for storing every 5 minutes’ analyzed flow data. After 
updating the 5-minute table, the corresponding hour table gets updated. There should 
be these kinds of time-series tables for each scope of analysis in the analyzer. 
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Fig. 7. Traffic Analyzer and Various Applications 

The presentation phase can provide an analysis to users about the traffic in various 
forms using the Web interface. Before designing an analyzer, we have to determine 
analysis items to be shown in this phase. Then the traffic analyzer can generate the 
corresponding DB tables based on these items. That is, a different analyzer is required 
to support a different purpose application. Because tables contain analyzed data which 
is ready to be shown, the time needed to create reports and HTML pages is very short, 
typically less than a second. 

3.5 Presentation 

This phase provides analyzed data to corresponding applications. Because the 



header information of all packets has been stored to the flow store being compressed 
into flows, it can provide any information to applications in a flexible and efficient 
way. NG-MON can provide necessary information to the billing applications on IP 
networks, IDS systems, and so on. 

4 Design Analysis 

We have validated our design of NG-MON analytically for monitoring high-speed 
networks. We already described the flexibility and the scalability of our design. At 
each phase, we can assign a number of systems for load distribution, or can merge 
some phases into one system. The appropriate number of systems will be determined 
from this analysis. 

4.1 Assumptions 

The monitored network link speed is 10 Gbps, and our system captures all the 
packets inbound and outbound. The size of a single packet header data is 28 bytes, 
and that of a single flow data is 32 bytes. Then we calculate the size of data to be 
processed in a second in a probe, flow generator, and flow store. The average number 
of packets per flow (Cavg) is 16, which is derived from the flow generator test on our 
campus network. The average packet size (Pavg) is 550 bytes from the same testing. So 
in this numerical analysis we use the follow values as shown in Table 1. 

 
Symbol Description Value 
L Link speed 10 Gbps 
d Full duplex factor 2 
Hp A single packet header data size 28 bytes 
Hf A single flow data size 32 bytes 
Cavg Average packet count per flow 16 
Pavg Average packet size 550 bytes 

 Table 1. Symbols and its values 

4.2 The amount of data to be processed 

The total raw packet (Tp) in the packet capture phase, the total raw packet header 
information (Th) in the flow generation, and the total flow data (Tf) in the flow store 
processed in one second are as follows: 
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It seems meaningless to calculate the size of total flow data in a second (Tf) 

because it is too short to be used as an exporting period in the flow generation phase. 
So we observe the size of flow data in a minute (1 min-Tf), five minutes (5 mins-Tf), 
and an hour (1 hour-Tf): 

1 min-Tf = 9(Tf) × 60 = 540 Mbytes 
5 mins-Tf = 2.7 Gbytes 
1 hour-Tf = 32.4 Gbytes 
If we choose one minute as the exporting period, each flow store requires only 540 

Mbytes of disk space. In the same way, if we choose 5 minutes, 2.7 Gbytes are 
required per flow store. 

4.3 Allocation of systems to each phase 

The amount of data to be processed at each phase is typically beyond the 
processing capacity of a single off-the-shelf general-purpose PC system. For example, 
a single probe cannot process all the raw packets of 2.5 Gbytes in one second because 
of the limited network interface card (NIC) and PCI bus capacity in a PC. 

During processing in a single system, there are several subsystems that affect the 
monitoring capacity: NIC bandwidth, PCI bus bandwidth, memory, CPU processing 
power, storage and so on. Let us consider a computer system with a gigabit Ethernet 
NIC and 66MHz/64bit PCI bus and 1 Gbyte RDRAM (800MHz/16bit) and 2 GHz 
Pentium 4. Then the theoretical max transfer rate of a gigabit Ethernet NIC is 125 
Mbytes/sec, PCI bus is 533 Mbytes/sec, and dual channel RDRAM (800MHz/16bit) is 
3.2 Gbytes/sec [6, 12]. The probe can have multiple NICs, one for sending raw packet 
header information to flow generators, the others for capturing. Then, there can be 4 
NICs within the bandwidth of a PCI bus so far as the number of PCI slots permits. 
Therefore, it requires 7 probe machines to receive total raw packets of 2.5 Gbytes in a 
second for a full duplex 10 Gbps link. 

In the flow generator phase, it receives 131.1 Mbytes of raw packet header per 
second (Th), so theoretically 1 flow generator which has 2 NICs is needed. In the flow 
store phase, though it is sufficient for processing the rate of flow data with one system, 
the execution time of queries affects the required number of flow stores. Such an 
execution time varies as to the kind of database system, DB schema, query 
construction, and so on. Therefore, the number of flow stores is flexible regarding to 
those kinds of factors. In our previous work [4], it took about 4 seconds to insert 20 
Mbytes of raw packet headers into MySQL database running on an 800 MHz Pentium 
3 with 256 Mbytes of memory. If we assume the runtime of an insert is O(N), it will 



take 150 seconds to insert 1 min-Tf data into the database. Here we assume the 
analysis system takes about 2 minutes for querying. Then it will take 4 minutes and 30 
seconds to insert and analyze an 1-minute flow data. As we have to finish all these 
operations within 1 minute, it requires 3 systems for inserting, and 2 systems for 
analyzing in the flow store phase. 

 
 Packet Capture Flow Generation Flow Store Total 

100 Mbps 1 1 
1 Gbps 1 2 3 

10 Gbps 7 1 5 13 
 

Table 2. The required number of systems in each phase 
 

Therefore, it requires approximately 13 systems (7 in the packet capture phase, 1 
in the flow generation phase, 5 in the flow store phase) to provide flow data to 
analysis systems in a fully-utilized, full-duplex 10 Gbps network. In a 100 Mbps 
network, the amount of flow data in a minute is less than 10 Mbytes. Thus, three 
phases can merge into one system. In a 1 Gbps network, packet capture and flow 
generation phase can merge into one system which has 3 NICs. And the flow store 
phase can be composed of 2 systems if the time to insert and query the 1min-Tf of 1 
Gbps network is less than a minute per each operation. Table 2 summarizes the 
required number for systems in each phase for 100 Mbps, 1 Gbps and 10 Gbps links. 

5 Related Work 

Table 3 compares NG-MON with other passive network monitoring systems. Ntop 
[13] is a monitoring software system that provides detailed protocol analysis and a 
graphical user interface. However, Ntop is not suitable for monitoring high-speed 
networks from our experience in deploying in an operational network. It cannot scale 
beyond monitoring a fully-utilized 100 Mbps link. 

FlowScan [14] is a NetFlow analysis software system that uses cflowd [15], RRD 
Tool [16], and arts++ [17]. It can only process the NetFlow [18] data format and is not 
suitable for monitoring high-speed networks either. Ntop and FlowScan are 
appropriate for analyzing relatively low-speed networks such as a WAN-LAN junction 
or a LAN segment. Our approach of distributing the processing load may be applied to 
Ntop and FlowScan in improving their processing capabilities. 

CoralReef [19] is a package of library, device driver, class, and application for 
network monitoring developed by CAIDA [20]. CoralReef can monitor up to OC-48 
network links. With respect to the load distribution, only CoralReef suggests a 
separation of flow generation and traffic analysis, but without consideration of 
clustering of processing systems in each stage. 

Sprint’s IPMon project [21] developed a probe system for collecting traffic traces, 
which is used for off-line analysis after transferring to a laboratory. Their approach 
uses purpose-built hardware to assist the packet capturing and processing. 



 
 Ntop FlowScan CoralReef Sprint IPMon NG-MON 

Input Raw Traffic, 
NetFlow 

NetFlow Raw Traffic Raw Traffic Raw Traffic 

Output Throughput Throughput Throughput Packet Trace Throughput 
Speed <<100Mbps <<155Mbps <<622Mbps 10Gbps 10Gbps 

Solution Software Software Hardware+ 
Software 

Hardware+ 
Software 

Software 

Sampling 
used 

No Yes(device) Configurable No No but 
Configurable 

Analysis On-line On-line On-line Off-line On-line 

 Table 3. A Comparison of NG-MON with Related Work 

Our NG-MON has been designed for monitoring high-speed IP networks. It takes 
raw traffic packets as input, and analyzes captured data online and then generates 
various throughput related data. NG-MON is a software-based solution (i.e., does not 
depend on any specific hardware), which can be easily installed and run on a variety 
of Unix and Linux platforms. NG-MON does not use sampling for capturing packets 
without any loss. However, the system configuration user interface allows the system 
to be configured to capture packets using sampling if needed. 

6 Conclusion and Future Work 

In this paper, we have presented the design of NG-MON, a scalable and flexible 
monitoring and analysis system for high-speed IP networks. NG-MON adopted a 
pipelined and parallel architecture for achieving our goal. NG-MON with its pipelined 
and parallel architecture can process packets without any loss. Multi-gigabit networks 
generate a lot of traffic and thus the amount of data generated from packet capturing is 
incredibly large. Our packet and flow processing method requires small, fixed amount 
of disk space on each flow store. We have also presented a numerical analysis of our 
design and have presented the theoretical number of systems for monitoring 10 Gbps 
networks as an example.  

NG-MON can play a major role in providing necessary information to multitudes 
of applications. For example, it can be used as a basis for billing on IP-based 
applications (such as VoIP, Internet access). It can be also used as a basis for intrusion 
detection where capturing all packets is essential. Customer relationship management 
(CRM) is a hot topic for ISPs these days. NG-MON can provide useful user usage 
information for such purpose. 
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