
Optimizing Block Propagation in Bitcoin Network
with Region-based Neighbor Selection Using

Reinforcement Learning
Wonseok Choi, Euidong Jeong, Jongsoo Woo, James Won-Ki Hong

Department of Computer Science and Engineering
POSTECH

Pohang, Korea
{ws4583, justicedong, woojs, jwkhong}@postech.ac.kr

Abstract—Bitcoin proved the potential of blockchain technol-
ogy through decentralized, transparent, and immutable transac-
tions. However, there are still challenges for fast and stable tran-
sitions. Optimizing block propagation times within the network is
one of them. Prolonged propagation times can restrict efficiency,
scalability, and security. This paper presents a novel approach to
reducing block propagation time through leveraging reinforce-
ment learning (RL) for the node’s neighbor selection strategies.
We implemented a Deep Q-Network (DQN) model in minimizing
block receive times at each node, thereby impacting overall block
propagation time. We used a model that defines node states
based on latencies of outbound connections, which present the
node’s region. By evaluating this model through simulations using
SimBlock, a robust Bitcoin network simulator, we observed a
significant reduction in block propagation time—approximately
30% for smaller networks and 20% for larger ones. Our analysis
extended to node connections generated by our model and
comparative evaluation against existing methodologies.

Index Terms—Blockchain, Bitcoin, Reinforcement Learning,
Deep Q-Network, Block Propagation

I. INTRODUCTION

Bitcoin [1] is a pioneering digital currency that operates
on a decentralized peer-to-peer network. Initially outlined in a
2008 whitepaper by an anonymous entity or group known as
Satoshi Nakamoto, Bitcoin illuminated the immense potential
of blockchain technology as a decentralized ledger system,
ensuring transparency and immutability [2]. The transpar-
ent nature of its blockchain permits public scrutiny of all
transactions, fostering trust, while its immutability structure
guarantees that once information is recorded, it remains
unchangeable. Although primarily utilized as a digital cur-
rency facilitating online transactions, Bitcoin extends its reach
into diverse sectors such as supply chain management, and
healthcare, leveraging its capabilities in innovative ways [3].
Additionally, the strength of Bitcoin lies in its decentralized
nature, which removes the need for intermediaries, fostering
direct peer-to-peer transactions and enhancing autonomy in the
digital landscape.

In the expansive landscape of blockchain’s possibilities,
there are still numerous technical challenges. Reducing block
propagation time is also an important problem for scalability

and security issues. As new blocks are added to the chain, they
must swiftly propagate across the network for validation by
nodes. Longer propagation times can hinder the efficiency and
speed of the blockchain ecosystem. They serve as a bottleneck,
leading to scalability issues by limiting transaction processing
and potentially causing delays in achieving consensus [4].
Moreover, prolonged propagation times can cause security
risks such as double-spending by increasing the likelihood of
temporary forks [5]. Solutions to tackle this challenge involve
various approaches, including network optimization strategies
[6], relay protocols [7], and neighbor selection algorithms
[5], [8]. While these approaches have yielded commendable
progress, there are still some limitations such as resource
utilization and residual vulnerabilities in terms of security
protocols [5].

In this study, we present a novel approach focusing on
reducing block propagation time by neighbor selection strategy
drawn by reinforcement learning (RL). Reinforcement learning
is a branch of machine learning where an agent learns to make
decisions through interaction with an environment to maximize
rewards [9]. It is being increasingly utilized across various
industries and applications due to advancements in algorithms,
computational power, and the availability of vast amounts of
data. With RL techniques, our primary goal is to reduce the
block receive time at each node. Since block propagation time
is the same as the block receive time of a node that received
the block at last, we expected that this approach would lead
to a reduction of block propagation time.

We constructed an RL model by setting each node’s state as
latencies of the node’s 8 outbound connections. These latencies
represent the outbound nodes’ region. Node’s actions are
selecting one of these 8 outbound nodes to interchange with
another randomly chosen node, or maintaining present status.
The reward is computed by comparing a node’s block receive
time before and after an action. We evaluated this RL-driven
approach for reducing block propagation time, by executing
a simulation with SimBlock [10], a blockchain simulator that
has the strength to simulate the Bitcoin network and evaluate
block propagation time. Our result showed that it was reduced



by about 30% for small networks and 20% for large networks.
We also analyzed node connections made by our model and
compared our results with other work.

The remainder of this paper is as follows. In section
II, we describe the background of SimBlock which is a
Bitcoin network simulator for evaluating block propagation
time, and related work. In section III, we present the design
and implementation of our RL model and integration with
SimBlock. Section IV evaluates the performance of our model
by measuring block receive time and block propagation time.
Section V discusses the evaluation results and limitations.
Then, we conclude this paper with possible future work.

II. BACKGROUND AND RELATED WORK

This section provides some background about SimBlock
and reviews related work about neighbor node selection al-
gorithms.

A. SimBlock

SimBlock [10] is an event-driven open-source blockchain
network simulator that has the strength to observe the block
propagation of the network. This simulator provides a real-
istic environment by manipulating block, node, and network
parameters. Simblock uses the Bitcoin routing protocol to
connect nodes. When executing Simblock, nodes are generated
following the parameters such as the location of the node and
the mining power of the node. For each node, its outbound
nodes are randomly selected among the whole nodes. After the
connection process is done for every node, the mining process
begins. Considering the mining power, a node is selected as
a mining node, and the mined block is propagated across
the network. If the block height meets the parameter value
in the configuration, the simulation ends. Varying the whole
parameters, the following output can be observed through
simulation:

• Block receive time of each node
• Fork information, block height, and ID
• Events and contents while simulation

– Node connections
– Block transmissions

The source code and detailed information for the parameters
and output can be found in [11].

Currently, Simblock supports two types of consensus al-
gorithms, Proof-of-Work (PoW) and Proof-of-Stake (PoS).
For network configuration, it provides latency for the year
2015 and 2019 among 6 regions: North America, Europe,
South America, Asia Pacific, Japan, and Australia. Region
distribution for Bitcoin is also included. SimBlock has enabled
numerous studies and they are described in [12]. The case
studies presented here prove that SimBlock is a flexible
and effective blockchain simulator by replicates blockchain
scenarios.

B. Related Work

There are many studies focused on reducing block propaga-
tion time by enhancing neighbor selection algorithms. Fadhil

et al. [13] and Owenson et al. [14] used clustering based on
locality and ping time for neighbor selection, respectively.
However, Sudhan et al. [15] claimed that these approaches
have drawbacks in that they are vulnerable to an eclipse attack
or network partition attack. To solve these problems, they pro-
posed a neighbor selection algorithm based on the combination
of geographical proximity and random selection. Wang et al.
[16] used bandwidth-based neighbor selection. To prevent an
eclipse attack, a node disconnects a neighbor if its bandwidth
is less than a specific threshold and randomly selects a new
neighbor. Jiang et al. [17] introduced an algorithm for neighbor
selection that calculates a neighbor node’s propagation ability
with the neighbor’s degree, local clustering coefficient, and
mining power.

Some studies evaluated their neighbor selection algorithm
using SimBlock. Aoki et al. [8] investigated proximity-based
strategies for selecting neighboring nodes in a blockchain
network. The authors proposed an algorithm in which each
node rates its neighbor nodes based on the time between
block generation time and the reception time of an inventory
message. Using these node scores, each node regularly rese-
lects all of its neighbor nodes. By experiment, they concluded
that the block propagation time was minimum when 1 of the
neighbor node was selected randomly. Their algorithm was
compared to a fixed-neighbor network and it showed lower
propagation times. While this algorithm successfully improved
block propagation time, it has some drawbacks in that each
node incurred a computational burden and it is vulnerable to
eclipse attacks.

Matsuura et al. [5] introduced a neighbor selection method
based on the node’s regional information. They made their
method robust to eclipse attacks by randomly selecting neigh-
bor nodes considering the node’s region. If a neighbor node’s
region is the same as the node, it is called an inside neighbor.
Otherwise, it is called an outside neighbor. They evaluated the
optimal number of the outside neighbors varying the number
of the nodes. They also used Simblock and concluded that the
block propagation time is shortest when the number of outside
neighbors is 2 for the networks with 1500 or more nodes. In
a small network with 500 nodes, it was effective when the
number of outside neighbors was 1. They also compared their
method to the method proposed in Aoki et al. [8] and showed
that their method is superior to it. Compared to selecting
neighbors randomly, the block propagation time was reduced
by about 23% for the large network of 6,500 nodes and 32%
for the small network of 500 nodes.

In contrast to this previous work, our proposed method has
the advantage that each node can employ different strategies
based on a trained model, and there is no need for complicated
calculations for each node. This flexibility creates resistance to
security attacks. Since our model also uses a random selection
strategy, it is also resilient to eclipse attacks. Furthermore, our
method can be easily applied to each node by using a trained
model with the latencies of its neighbor nodes and removing
the connection with the output node of the model.



III. DESIGN AND IMPLEMENTATION

In this section, we provide our work’s design and implemen-
tation details. We have utilized the Deep Q-Network (DQN)
model described in [18] as the foundational framework for
our reinforcement learning (RL) approach. The environment
in which this model operates is finely tuned to the Bitcoin
networks. Table I describes the notations in our paper.

TABLE I
NOTATION

Variable Description
Sj,k
i State of node i in epoch j, iteration k

Aj,k
i Action of node i in epoch j, iteration k

Rj,k
i Reward of node i in epoch j, iteration k

BRT j,k
i Block receive time of node i in epoch j, iteration k

A. State-Action-Reward

• State: In our context, the state is defined as the set of
latency of a node’s outbound connections. The default
setting for the maximum number of outbound connections
in Bitcoin Core [19] is 10. However, many works done
before are using 8 outbound nodes for their model be-
cause the default setting was 8 in the past. To compare the
performance exactly, we used 8 outbound nodes in this
work. We fixed every state containing a set of 8 latency
values, representing the outbound links of the node. The
latencies signify the duration for data to travel through
these particular links, offering crucial observations on
network functionality.

• Action: The action space is constructed with precision
aimed at reducing the block receive time of a node. Every
action involves removing one among the 8 outbound
nodes from a given node. Additionally, there exists a ninth
action, denoted as “stay”, providing the choice to retain
the present state without any alterations. Taken together,
the action space specifies 9 unique options available for
each node. After the action of removing one of the given
node’s outbound nodes, a random node from the entire
network is added as a new outbound node of the given
node.

• Reward: The reward mechanism is designed to align with
our objective, which is reducing the block receive time
of each node to reduce the block propagation time. To
achieve our goal, we utilize the difference between the
block receive times before and after the execution of an
action as the reward. When the action taken is “stay,”
a theoretical reward of 0 is designated, indicating the
anticipation that block receive times before and after the
action will ideally remain the same, even though slight
deviations will be observed in practical experiments. This
design enables our model to find out the most efficient
actions for reducing block receive time.

These components comprise the operational basis for our DQN
model, aimed at boosting the efficiency and functionality of

Bitcoin networks, primarily targeting the reduction of block
propagation time.

B. Architecture

Fig. 1. Architecture of DQN Model

Our reinforcement learning approach is anchored by the
core framework of our DQN model, illustrated in Fig 1.
SimBlock acts as the interface facilitating the acquisition of
states from each node within the Bitcoin network for the agent.
Within its deep learning segment, the DQN model includes
three Fully Connected (FC) layers. The input dimension of
the model is set at 8, aligning with the 8 latency values
of outbound nodes. Similarly, the output dimension includes
9 distinct elements, covering 8 possible actions to remove
an outbound node, including the “stay” option. The agent
utilizes the states of each node acquired from SimBlock to
determine the actions of individual nodes. These actions are
relayed to SimBlock, where modifications to the selected
nodes’ outbound connections are implemented as per the
agent’s decisions. The “stay” option maintains the node’s
outbound connections without any alterations. After executing
actions and making adjustments to node connections, Sim-
Block returns the block receive time of each node. The reward
Rj,k

i is then computed as follows.

Rj,k
i = BRT j,k

i −BRT j,k−1
i

if Aj,k
i == “Stay”, Rj,k

i = 0
(1)

Throughout the training phase, we ignored the future reward
since we wanted to focus on immediate change in block
receive time. Therefore, the update rule for Q-values with
learning rate α is as follows.

Q(Sj,k
i , Aj,k

i ) ⇐ Q(Sj,k
i , Aj,k

i )

+ α[Rj,k
i −Q(Sj,k

i , Aj,k
i )] (2)



Fig. 2. Workflow in Epoch j

C. Workflow

Our detailed training process is shown in Fig 2.
1) Network Initialization: The training begins with Sim-

Block’s execution, generating a foundational Bitcoin
network. Its initial run generates a specific number of
nodes and their connections, following the configuration
and Bitcoin routing protocol. This network forms the dy-
namic environment within which the RL agent operates
and learns.

2) Simulation: During each simulation, the Bitcoin net-
work operates dynamically, with nodes randomly mining
blocks. The simulation continues until the block height
reaches the predefined threshold. At the end of the
simulation, SimBlock offers the RL agent two vital
pieces of information. It provides the current network
state, including latency values of outbound connections
for each node. It also reports the mean block receive
time for each node, a crucial metric for evaluating the
network’s performance.

3) Action Selection: Utilizing the obtained states, the RL
agent makes decisions by selecting actions for each
node, aiming to optimize the block receive time. These
chosen actions are then translated into network-level
adjustments within the SimBlock environment.

4) Modifying Network: Following the chosen actions, each
node removes one of its neighbor nodes or maintains
its neighbors. If a node removes one of its neighbors, a
node from the entire network is randomly selected and
added to its new neighbor node. Then, the simulation is
conducted again with the modified network.

5) Training Model: By computing the reward of each node
from given outputs, the model is trained. The process
from Action Selection and Traning Model constitutes one
iteration. This iteration is repeated to train the model
with the given network. Furthermore, we defined the
entire step as one epoch and repeated epochs multiple
times to train the model with different networks.

IV. EXPERIMENT AND EVALUATION

A. Training Environment

Our experimental investigations took place on a computing
platform powered by an Intel Core i7-9700 processor without a
GPU. Within SimBlock, we configured the network to consist
of 100, 250, 500, and 1,000 nodes, respectively. The block
height was set to 500. For the training, we assumed that
each node within the network employs a compact block relay
strategy and is a churn node for convenience. Our experimental
setup mirrored the region distribution observed in the Bitcoin
network and latency among regions during the year 2019,
provided by SimBlock. The region distribution is shown in
Table II and an analysis for the latency can be found in [5].

TABLE II
REGION DISTRIBUTION IN BITCOIN 2019

Region Distribution
North America 0.3316

Europe 0.4998
South America 0.009

Asia Pacific 0.1177
Japan 0.0224

Australia 0.0195

For model training, We trained models with 100, 250,
500, and 1,000 nodes, respectively. To prevent overfitting, we
stopped an epoch when more than 80% of the nodes chose
the “stay,” option in an iteration. Hyperparameters used for
training are listed in Table II.

TABLE III
DQN HYPERPARAMETERS

Hyperparameter Values
Learning rate 0.001

Optimizer Adam
Batch size 256

Experience replay size 10,000
ϵ max(ExploreRateTries, 0.01)

ExploreRate 0.995
Hidden dimension 64

Epoch 100
Iteration 100

B. Evaluation for Block Receive Time

After training 4 models, we evaluated their performance
by observing the block receive time of a node. Similar to
the training process, we ran SimBlock over 100 epochs to
evaluate them in different networks and get stable results.
For each epoch, 100 iterations were used to estimate the
convergence of the result. Since 500 blocks are generated for
an iteration, we measured the mean of the block receive time
of a node that was generated at first for an iteration. While we
assumed that every node uses a compact block relay and are
churn node in training, we changed them to the default setting
defined in Simblock to evaluate the model in a more realistic
environment.

We computed the mean of the block receive time of the
first node for 100 epochs and it is shown in Fig 3. Our



model demonstrated a distinct decrease in block receive time
successfully. We could observe that the block receive time
converged over iteration. The maximum and minimum block
receive time over iterations are shown in Table IV. For the 100
nodes, block receive time was reduced by about 20%, and the
rate was decreased for more number of nodes. For the 1,000
nodes, the rate of decrease reached about 10%. In other words,
our model was effective for fewer nodes in improving block
receive time.

Fig. 3. Block Receive Time according to Number of Nodes

TABLE IV
COMPARISON OF BLOCK RECEIVE TIME

Number of Nodes Max(ms) Min(ms)
100 1,060 854
250 1,086 931
500 1,133 987

1,000 1,170 1,045

C. Evaluation for Block Propagation Time

Since our primary goal was to optimize the block propaga-
tion time, we measured the changes in the block propagation
time with our models with the same method in the previous
section. Fig 4 shows the results of our evaluation. We could
observe that the overall patterns are similar to Fig 3, the block
propagation time converges over iterations. This is reasonable
because block propagation time is the same as the maximum
block receive time for a block. The maximum and minimum
block propagation times over iterations are shown in Table V.
To sum up the results, the block propagation time was reduced
by around 30%. It was 27% for the large network of 1,000
nodes, and 32% for the small network of 100 nodes.

TABLE V
COMPARISON OF BLOCK PROPAGATION TIME

Number of Nodes Max(ms) Min(ms)
100 3,295 2,230
250 3,688 2,385
500 3,939 2,580

1,000 4,235 3,088

Fig. 4. Block Propagation Time according to Number of Nodes

D. Evaluation for Large Network

To measure the scalability of our model, we measured it on
larger networks. We simulated a network with 10,000 nodes
and applied the model trained with 1,000 nodes. The result
is shown in Fig 5. The initial block propagation time was
about 5,265ms while the minimum block propagation time
was about 4,191ms. The block propagation time was reduced
by about 20%. This result shows that our model improved the
performance in a larger network, and it can be applied to the
real Bitcoin network.

Fig. 5. Block Propagation Time for 10,000 Nodes

E. Analysis for Node Connections

While evaluating our model, we found that the model
consistently selected the action labeled as “stay” for a sig-
nificant proportion of nodes within the network during the
later iterations. This observation suggests the presence of an
optimal selection of outbound nodes. To analyze the node
connections, we captured the snapshot of the node connections
for the last iteration of the evaluation in the previous section.
We summarized the result with the top three cases that have
the largest percentages in Table VI. As we simulated a network
with 10,000 nodes, there are 10,000 nodes in the table. It can



TABLE VI
NODE CONNECTIONS WITH 10,000 NODES

Node’s Region Outbound Node’s Region Count Percentage TotalNorth America Europe South America Asia Pacific Japan Australia

North America

5 3 0 0 0 0 1850 55.8%

33166 2 0 0 0 0 907 27.4%
7 0 0 1 0 0 156 4.7%
· · · · · · · · · · · · · · · · · · 403 12.1%

Europe

0 8 0 0 0 0 3658 73.2%

49982 6 0 0 0 0 1033 20.7%
3 5 0 0 0 0 214 4.3%
· · · · · · · · · · · · · · · · · · 93 1.8%

South America

3 3 2 0 0 0 5 5.6%

902 6 0 0 0 0 5 5.6%
2 5 1 0 0 0 4 4.4%
· · · · · · · · · · · · · · · · · · 76 84.4%

Asia Pacific

2 2 0 3 1 2 196 16.7%

11772 3 0 2 1 2 70 6.0%
3 1 0 2 2 3 67 5.7%
· · · · · · · · · · · · · · · · · · 844 71.6%

Japan

0 1 0 4 3 0 15 6.7%

2241 0 0 4 3 0 10 4.5%
0 1 0 6 1 0 9 4.0%
· · · · · · · · · · · · · · · · · · 190 84.8%

Australia

4 1 0 1 0 2 12 6.2%

1953 3 0 1 0 1 11 5.6%
3 4 0 0 0 1 10 5.1%
· · · · · · · · · · · · · · · · · · 162 83.1%

be found that the distribution of the node’s region perfectly
matches with Table II.

For the nodes whose regions were set to North America,
more than half of the nodes selected 5 nodes whose regions
are also the same as their outbound nodes. The remaining 3
outbound nodes’ regions were Europe. Including the top three
results, it can be said that connecting with the same region is
beneficial for the nodes in North America, avoiding too many
connections. It is also interesting to see that the third result
showed the North America nodes chose to connect to Asia
Pacific node, unlike they chose the Europe node in the top
two results. We could not find any examples that they chose
7 outbound nodes with the same region and 1 outbound node
in Europe.

For the Europe nodes, 73.2% of the nodes chose all of
its outbound nodes in the same region. This is reasonable
because close to 50% of the nodes are in Europe. For fast
block propagation, propagating the block to close nodes is
a straightforward greedy strategy. Our result also shows that
most of the nodes chose close nodes as outbound nodes. It
is also important to point out that there was no example of
a Europe node choosing 7 Europe nodes as outbound nodes.
There might be some biased points while training.

For the nodes in South America, Japan, and Australia, there
were too few samples to make meaningful observations. For
the nodes in Asia Pacific, the top three results show that their
outbound nodes are well-spread. However, similar to the three
regions mentioned earlier, over 70% nodes were categorized
in “others”, which means this can not be seen as a significant

observation.

V. DISCUSSION

A. Comparison with Previous Work

Since [5] used a similar strategy that uses region information
to reduce block propagation time and SimBlock for evaluation,
we mainly compare this work to our work in this section. As
mentioned in Section II, block propagation time was reduced
by about 20∼30% in that work. It reduced less when the
network was large, and more when the network was small.
This is the same with our results. In our work, we reduced
block propagation time by 27% for the large network and
32% for the small network. It can be said that our work did
not impressively improve by comparing the performance of
previous work. However, considering the environment where
the simulator runs, comparing just the reduced rate could be
unfair for evaluating overall performance.

Comparing the strategies, [5] used 6 inbound neighbors and
2 outbound neighbors to optimize the block propagation time.
In our work, Table VI shows that our DQN model concluded
that using different numbers of inbound and outbound neigh-
bors following the node’s region is optimal. In detail, the more
the nodes are in the same region, it is beneficial to choose more
inbound neighbors. Since we could not evaluate the nodes
from the regions that have a small number of nodes accurately,
we expect that there is room for improvement by choosing
different numbers of inbound, and outbound neighbors in those
regions.



B. Limitations

In this work, we assumed that nodes connect to a random
node from the whole network. This indicates that when an
action is executed and one of the outbound nodes is removed,
it is likely to connect a new node from a region with a large
number of nodes, in our work, it is Europe. However, in real
Bitcoin protocol, nodes are not connected to a random node,
they use DNS seeds to find a new node [20]. Moreover, we
assumed that nodes have exactly 8 outbound neighbors but
it can differ by node’s configuration. This implies that our
approach could not fit into a real Bitcoin network. To make an
elaborate simulation of the Bitcoin network, more research on
DNS seeds, and the degree of the nodes is needed. However,
since our model learns with regional latency and is affected by
the number of nodes in each region, we expect that our model
will be valid if there are no dramatic changes in latency and
number of nodes.

We only used the latencies of neighbor nodes to train our
DQN model and ignored other features such as the mining
powers of nodes. There are two reasons why we used this
approach. The first one is just to simplify the training process
to boost the speed of training. The other one is that latency is
the most straightforward feature and it is highly accessible by
node to learn. We expect that using more features of the nodes
as used in [17] can improve the performance of our model.

VI. CONCLUSION

We studied a comprehensive exploration to optimize block
propagation time within Bitcoin networks. Through reinforce-
ment learning, we have devised an innovative approach fo-
cused on enhancing the performance of blockchain systems,
specifically targeting the reduction of block propagation time
in Bitcoin. Our study utilized SimBlock, a robust blockchain
network simulator that has strength in simulating Bitcoin
networks and evaluating block propagation time.

The DQN model was implemented in an environment where
states represent the latencies of outbound nodes for each node.
Actions allow the selection of an outbound node to remove
connection and rewards are computed from the difference in
block receive times before and after action. We planned to
reduce block receive time for each node and eventually reduce
block propagation time through the iterative learning process.

The results from our experiments demonstrated the effec-
tiveness of our approach. Through training and evaluation,
we observed a significant improvement in block receive times
with a reduction in block propagation time. The improvements
were evident across networks of various sizes, from 100
to 1,000 nodes. Our model also showed that it is scalable
by evaluation for 10,000 nodes. This outcome suggests that
our model has the potential to reduce block receive time
for individual Bitcoin nodes, consequently decreasing block
propagation time when applied across multiple nodes. We also
analyzed node connections after applying our model, and it
gave room for improvements with possible future research.

In conclusion, our research underlines the potential of
reinforcement learning in optimizing block propagation time

within Bitcoin networks. As mentioned in the discussion
section, our future work will focus on optimizing the model
by adding other features. Moreover, we are planning to make
models that can be applied to other blockchain networks.

ACKNOWLEDGMENT

This work was supported by Hana Institute of Technology
funded by Hana Bank and Hana TI, Institute of Informa-
tion & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korean Government (MSIT) (RS-
2024-00392332, Development of 6G Network Integrated In-
telligence Plane Technologies) and Smart HealthCare Pro-
gram(www.kipot.or.kr) funded by the Korean National Police
Agency (KNPA, Korea) [Project Name: Development of an
Intelligent Big Data Integrated Platform for Police Officers’
Personalized Healthcare / Project Number: 220222M01]

REFERENCES

[1] Nakamoto, Satoshi. ”Bitcoin: A peer-to-peer electronic cash system.”
Decentralized business review (2008).

[2] Yaga, Dylan, et al. ”Blockchain technology overview.” arXiv preprint
arXiv:1906.11078 (2019).

[3] Zheng, Zibin, et al. ”Blockchain challenges and opportunities: A survey.”
International journal of web and grid services 14.4 (2018): 352-375.

[4] Shahsavari, Yahya, Kaiwen Zhang, and Chamseddine Talhi. ”A theo-
retical model for block propagation analysis in bitcoin network.” IEEE
Transactions on Engineering Management 69.4 (2020): 1459-1476.

[5] Matsuura, Hiroshi, Yoshinori Goto, and Hidehiro Sao. ”New Neighbor
Selection Method for Blockchain Network With Multiple Regions.”
IEEE Access 10 (2022): 105278-105291.

[6] Chawla, Nakul, et al. ”Velocity: Scalability improvements in block
propagation through rateless erasure coding.” 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2019.

[7] Otsuki, Kai, et al. ”Effects of a simple relay network on the bitcoin net-
work.” Proceedings of the 15th Asian Internet Engineering Conference.
2019.

[8] Aoki, Yusuke, and Kazuyuki Shudo. ”Proximity neighbor selection
in blockchain networks.” 2019 IEEE International Conference on
Blockchain (Blockchain). IEEE, 2019.

[9] Arulkumaran, Kai, et al. ”Deep reinforcement learning: A brief survey.”
IEEE Signal Processing Magazine 34.6 (2017): 26-38.

[10] Aoki, Yusuke, et al. ”Simblock: A blockchain network simulator.”
IEEE INFOCOM 2019-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2019.

[11] SimBlock, [Online]. Available: https://github.com/dsg-titech/simblock
(Accessed: 12.14.2023)

[12] Shudo, Kazuyuki, et al. ”Blockchain Network Studies Enabled by
SimBlock.” 2023 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). IEEE, 2023.

[13] Fadhil, Muntadher, Gareth Owenson, and Mo Adda. ”Locality based
approach to improve propagation delay on the bitcoin peer-to-peer
network.” 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM). IEEE, 2017.

[14] Owenson, Gareth, and Mo Adda. ”Proximity awareness approach to
enhance propagation delay on the bitcoin peer-to-peer network.” 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017.

[15] Sudhan, Amool, and Manisha J. Nene. ”Peer selection techniques for
enhanced transaction propagation in Bitcoin peer-to-peer network.” 2018
Second International Conference on Intelligent Computing and Control
Systems (ICICCS). IEEE, 2018.

[16] Wang, Ke, and Hyong S. Kim. ”FastChain: Scaling blockchain system
with informed neighbor selection.” 2019 IEEE International Conference
on Blockchain (Blockchain). IEEE, 2019.

[17] Jiang, Suhan, and Jie Wu. ”Taming propagation delay and fork rate
in bitcoin mining network.” 2021 IEEE International Conference on
Blockchain (Blockchain). IEEE, 2021.

[18] Mnih, Volodymyr, et al. ”Playing atari with deep reinforcement learn-
ing.” arXiv preprint arXiv:1312.5602 (2013).



[19] Bitcoin Core, [Online]. Available: https://github.com/bitcoin/bitcoin (Ac-
cessed: 12.14.2023)

[20] Tapsell, James, Raja Naeem Akram, and Konstantinos Markantonakis.
”An evaluation of the security of the bitcoin peer-to-peer network.”
2018 IEEE international conference on internet of things (IThings) and
IEEE green computing and communications (GreenCom) and IEEE
cyber, physical and social computing (CPSCom) and IEEE smart data
(SmartData). IEEE, 2018.


