Workbook Approach to Algorithm Design and Service Accounting in a Component Orientated Environment

Eamonn de Leastar
edicoleastar@tssg.org

Jonathan Brazil
jbrazil@tssg.org

Dr. Willie Donnelly
wdonnelly@tssg.org

Mícheál Ó Foghlú
mofoghlu@tssg.org

Telecommunications Software & Systems Group (TSSG)
Waterford Institute of Technology,
Cork Road, Waterford, IRELAND
http://www.tssg.org
Project Funded by Enterprise Ireland
Abstract

As the shift towards the next generation of services runs its course, the emphasis within accounting for such services has moved towards robust and flexible components. An accounting architecture with the ability to scale, based on the foundation of a solid core of rating components, incorporating transaction management, object pooling and queuing is presented. Using the Workbook approach to algorithm modelling is a logical option that allows for the decoupling of the algorithm from the architecture of the rating component. Separating the algorithm allows for the design of core functionality that will rate for any service based on the concept of “pluggable” algorithms for each respective service.

1. Introduction

Rating is a time-consuming operation; requiring significant resources to cope with the volume of transactions involved in a typical (inter)national service. The next generation of services has just started to emerge into the market place and a suitable rating mechanism is needed in order to meet the demands of multiple services, which are becoming increasingly diverse.

Traditional solutions involved the use of relational database tables [11] to support the large volume of records generated by a typical telephone exchange. These tables were exhaustively queried and cross-referenced in order to obtain results relating to subscriber charges. Once calculated this information is sent to the billing department for processing. The residue left behind is a huge collection of database rows representing the original Charge Detail Records (CDR). There is no extra information other than that which a database query may offer about the table. The Internet Protocol Detail Record (IPDR)[2] offers a more descriptive representation mechanism, enabling the integration of varied service delivery models.

A suitable rating engine that combines efficient high volume processing with the flexibility to cope with multiple types of service is paramount to the continual evolution of customer charging. For such a rating engine to succeed it must comprise a number of features. Firstly, it should have a solid, refined rating core that is primarily concerned with the evaluation of algorithms against usage data to produce charges. Secondly, it must be scalable in order to cope with the high volumes of traffic. Thirdly, it must present a way of decoupling the charging algorithms from the system so that as services or charging structures change over time, the rating engine will not require recoding to reflect the new ideas.

This paper describes the Rating Bureau Service (RBS) project currently in the Telecommunications Software & Systems Group (TSSG). This project is applying this abstraction approach to the design (and prototype development) of a distributed, component orientated rating architecture.

At a higher level of architectural design, the RBS is built using the concept of broker domain management via a web based user interface. When a broker, who can be considered to be an agent for a service provider, registers with the system an account is set up where they can modify account details and their algorithm portfolio. Charge records are uploaded, in IPDR [2] format, by the broker to the system via the UI. The broker can trigger a rating of these records, can modify the algorithm at any stage, and rate again using the updated algorithm without any need for administrative interaction. Also the updated IPDRs remain after the rating process has finished contain meaningful data that is in standard XML mark-up [10] format for added clarity.

For practical and pragmatic reasons the project has adopted the use of standard spreadsheet-based workbooks as a serialization medium for algorithms and lookup tables. This maximises the system’s potential to allow the general operator to maintain the system, as manipulation of Excel workbooks [4] is a common skill which allows simple tweaking of relatively complex charging algorithms. In order to implement this, the Rating Engine is built using a standard COM-based [8][9] spreadsheet evaluation engine component (essentially a computational component that adheres to a Microsoft Excel format workbook representational model [4][5]).

Worksheets provide a natural design canvas for algorithms. The spreadsheet model is a tried and tested model in the field of conventional accountancy and now it is being applied to rating for e-services. RBS feeds from some of the work done in the Bandwidth 2000 project [1].

2. Broker Interaction Model

It will always be necessary to have some user interaction in order for a rating engine to operate successfully. The algorithms must be maintained, and usage data pushed into the system for processing. However, new thinking on the provision of services and the role of the service provider has opened up a new avenue in the design of a rating engine.
A rating engine might typically operate within an organization, processing usage data from some record source into a specific charge for the associated service. This is no longer a hard and fast rule. Service providers will frequently outsource customer management and brokers have emerged to take on this role. For a service to succeed it must offer value for money and Quality of Service to meet the needs of the customer. Brokers have the ability to offer this to their customers by spreading a service across multiple service providers, should the service be composed or simply by shopping around for the best deal in atomic services.

This new model of service provision to customers dictates that a new control path must be added to the existing service architecture. A Rating Engine can become a service used by a broker to deliver a flexible charging regime to its service providers, and customers. The broker must be able to manage their respective aspect of a generic rating engine service. Brokers need to maintain personal profiles and portfolios (collections of algorithms for different services). The broker needs to be able to view the impact of changes within the algorithm on their profits or potentially, their customer base. Allowing brokers to remotely manage and update relevant information delegates the entire user profile administration end of the system to the broker.

Thus candidate components within the RBS can be identified: User Interface, Broker Manager, Portfolio Manager and Rating component emerge as clear subsystems from the above discussion. However, this architecture is still missing one component in order to be complete. For rating to take place information must be passed into the system in a legible format. In the RBS system the medium for the transfer of IP records is the Internet Protocol Detail Record (IPDR) [2], an XML based file with a well defined XML Schema.

Within the RBS the IPDRServices component is responsible for accepting IPDRs from a requesting source and passing these IPDRs into the system so that they can be rated. There is standardised approach to IPDR management, covered in a more detail [3].

3. Workbook Representation

The idea of using a spreadsheet workbook to manipulate or process accounting type data is well accepted. The practice is considered the norm in conventional accounting. The workings of a spreadsheet are quite simple. Data is inserted into either index addressable or named cells. This information can then be modified or injected into some calculation by the use of standard formulae. Every workbook has this typical layout and structure. Microsoft Excel [4] is the de-facto standard for spreadsheet modelling in the workplace, adopted in many accounting institutes as a standard document format.

Conventional rating engines extract usage information from a Charge Detail Record (CDR) and insert this information into programmatic variables for calculation in a hard-coded formula. Representing the same information in a workbook makes a real difference to this unyielding design. Cells in a workbook can be named so as to create an easy to remember alias rather than a cell reference. The IPDR is a standard XML document with named sections and data elements. Each element in this IPDR document can mapped to a named cell in a workbook. This simple mechanism can serve as the foundation for a sophisticated rating process.

The structure of a workbook is a hierarchical tree structure and can be easily reverse engineered. Figure 3 contains a graphical view of a workbook schema for Excel XP and OpenOffice Spreadsheet. A Workbook comprises zero or more worksheets each containing a table of rows. Within each row are a number of cells, each of which may contain data and an optional name reference for the cell. This name reference is the foundation to the simplicity of the data mapping. If a new service is provisioned for use, a charging algorithm...
is needed to rate for that service. Assuming that IPDR is the standard transmission medium for the usage data, it is possible to design a suitable workbook in Excel and name specific cells to match the names of the necessary data elements in the IPDR. Thus when an IPDR is received each element in the IPDR is placed into the workbook using the name of the element as the cell reference. A pre-loaded algorithm within the workbook operates on the newly populated cells and produces a result in a specified location. This result is then extracted from the workbook and inserted into a charge element field within the IPDR, which is then serialised to disk as a rated IPDR.

Workbook formulae are a simple correlation of basic mathematical functions, used to operate on the data contained within cells in a worksheet. These formulae can be constructed by anyone with a reasonable working knowledge of spreadsheets. Therefore it makes sense that in a multi-service environment the brokers should be the administrators of the algorithms and not the overall system administrator.

4. Rating for Multiple Services

In traditional rating environments it is normal for the variety of services being offered to fall under the same fundamental service umbrella. Such an example would be a standard telecommunications service provider, offering telephone and Internet services. Both of these services are basically a phone call from one point to another. One of the calls carries voice whereas the other carries data. However, it is most likely that each service is rated the same way initially and then a post rate process decides what special rates, if any, to apply in the event of the number called resolving to an Internet call or a voice call.

The next generation of services is far more diverse than this model. The connection to the Internet will only be the first step on the ladder of a composite service. Once connected users will be able to Video Conference, make VoIP calls, and use a host of other online services. Each of these services must be accounted for in a specific way. For example it would not be possible to rate a file upload service the same way that one would rate a VoIP call. The type of transactions involved and guarantee of QoS level is completely different for each service. From this arises the need for each broker of a service to have a dedicated algorithm for each service that they are offering. A portfolio of these services is maintained and consulted at the time of rating to match an algorithm with the type of service being accounted for. Information relating to the broker and type of service is contained in the IPDR and is easily extracted and mapped to a suitable algorithm stored within the respective broker’s portfolio.

This allocation of algorithms at rate-time allows for the loosely coupled system captured within RBS. Should a broker wish to change the way the VoIP service is rated then it takes no more than a few minutes with minimum effort to reflect these changes in the system. The broker logs into the system, modifies the desired workbook and saves the changes. Upon saving this new workbook the broker can then choose to rate new IPDRs or re-rate existing IPDRs to see the effect of the modifications. Compare this to the traditional environment where an algorithm would have to be manually changed by the development team and then the entire system would have to be brought down and reinitialised with the new code. This approach enables the system to remain live while changes are being made to the way usage data is rated (Fig 4).

5. Workbook Based Algorithm Design

The creation of an algorithm in a workbook is essentially composing formulae within the context of an IPDR aware spreadsheet. This formula takes data from other areas of the workbook and uses it to calculate a result, in this case a charge for the service being rated. The native interface of Excel or OpenOffice Spreadsheet brings a familiar working environment. Brokers can design algorithms offline and then when tested, can be uploaded to the system. The ability to address individual cells with named aliases is paramount to the success of this concept. By removing the need to design the workbook to a rigid standard the algorithm designer
needs only to insert the named fields that correspond to the fields of the IPDR being rated. The named cells allow the designer to position cells anywhere that is desired for easy interpretation of the workbook and it will not make any difference to the working of the system. They can also use colours and other formatting methods as long as the basic underlying structure is present.

Clearly Workbook-based algorithm design can deliver the flexibility and ease of use required to compose algorithms for next generation services. However, in the context of the RBS if workbook based algorithms are to be used an engine to interpret these workbooks must become the core of the rating component. Tests have proven that Excel, operated programmatically using COM Automation technology, is capable of rating small amounts of IPDRs in a reasonably efficient manner. It has not yet been determined if Excel could handle the volume of IPDRs being generated by a live system rating for multiple services. Commercially available components exist that are more tuned towards higher throughput processing. The RBS has chosen to engage the Formula One [6] ActiveX control from Tidestone Technologies, Inc. This control is a spreadsheet engine that understands the file format of Microsoft Excel workbooks. The Formula One package also has its own workbook editor but Microsoft Excel is a more fully featured interface, and thus continues to be used.

An algorithm designer is under construction for inclusion in the RBS suite. A broker wishing to create a new algorithm will open this application. Using schemas defining the structure of the IPDRs to be rated, each of the elements in the IPDR become available to as drop down lists or drag and drop items to be placed on a workbook. This type of interface ensures a valid algorithm will be composed, by leveraging the precise formatting and structural rules embodied in the Schema.

6. Conclusion

Workbook based algorithms are a desirable choice when it comes to rating systems. The decoupling of algorithm format and composition from the core rating system has obvious and desirable effects. Utilising the IPDR as a transmission and storage medium for records removes the old style CSV files and database tables. Instead research is being conducted into XML storage spaces and simple query based retrieval services, such as XML-Tuples and XML-Spaces [7]. A basic implementation of this technology has been trialled for IPDR storage and retrieval in the context of the RBS project.

Component based architecture enables the incorporation of scalability features such as object pooling, object activation strategies and security mechanisms to be incorporated. The COM+ environment suits the needs of this type of system perfectly. Components can be distributed across multiple machines for load balancing and security reasons. For example, a high-spec dedicated machine could be assigned solely to the task of rating and nothing else. Whereas a lesser spec machine could be assigned the task of dealing with UI requests and IPDR traffic also this could be placed outside a firewall for external access and the other components

The big question that remains to be answered is whether or not the large rating organisations such as telecommunications providers will adopt a radically new architecture in favour of the old systems. Most operators have an existing rating framework that has been tested and proven for reliability over many years. Reluctance to change from a working and reliable system will be a huge factor in gaining acceptance from this type of operator. However, in favour of such systems as the RBS, the flexibility so much sought after within rating systems is offered up front to subscribers of the system. Full reporting features can very easily be incorporated into the system, allowing brokers to analyse service usage under a customisable criteria base. Communications with such operators have confirmed such thinking. Existing systems offer reliability but are restricted in the services that they can rate for and are usually customised for a particular type of service. Reporting features are rather rigid and the ability to take a subset of records and rate them in different ways with different algorithms is currently unavailable for most systems.

The component architecture described in this paper is entirely broker demand driven and can meet these needs. The architecture lends itself to flexible and pluggable charging schemes that do not involve an overhaul of the system as new services are introduced.
7. References


