
A Framework for Modeling and Reasoning about Network Management
Resources and Services to Support Information Reuse

John Strassner, James Won-Ki Hong, and Kyo Kang

Pohang University of Science and Technology (POSTECH), Pohang, Korea
{johns, jwkhong, kck}@postech.ac.kr

Abstract

Most service and network management applications

are developed to use vendor- and device-specific
management data. These data are produced from
different languages, and hence can have different
representations of the same concept. We define a novel
knowledge representation and mapping mechanism that
uses ontological concepts and relations to generate a
formal description for the Directory Enabled Networks
new generation information model. This endows the
model with the necessary semantic richness and
formalism to represent different types of information for
use in network management operations. Data is extracted
from models, and is used to represent facts. These facts
are semantically related to concepts and relations from
one or more ontologies using a lexicon. A new data
structure is then built by combining knowledge extracted
from model elements with knowledge extracted from
ontological elements. Semantic relatedness measures are
then used to associate modeled data with ontological
data. Early results are also presented.

Keywords: information integration, information model,
information reuse, ontology, semantic relatedness

1. Introduction

Most network management applications use data
obtained from vendor-specific Command Line Interface
(CLIs) [1] and/or data conformant to the Structure of
Management Information (SMI) [2][3]. While SMI is a
standard, the vast majority of network management data
are vendor-, technology-, and sometimes platform-
specific. These data are low-level in nature, and for
example are used to describe the health of a device
interface. There are no standards for representing simple
higher-level concepts, like a Virtual Private Network, let
alone business concepts (such as a Service Level
Agreement), because there are no standard CLI or SMI
building blocks at this level of abstraction. This means
that there is no standard way to build network
management applications, and hence there is no easy way
to ensure that the services and resources offered by the
network are consistent with the business goals of the
organization(s) owning and using the network.

The root cause of the above problems is the lack of an
interoperable knowledge representation and associated
semantics for network management.

The use of an information model helps rationalize the
diverse set of vendor-specific data models used. Figure 1
shows such an approach [4], in which a single
information model (which is independent of data,
platform, language, and protocol) is created that defines a
standard set of managed objects, attributes, relationships,
and other elements. We use the DEN-ng information
model [4][5] for exactly this purpose. A set of formal
transformations is then applied to translate knowledge
from the information model to a standards-based data
model (e.g., a relational database using SQL92). This
meets the demand of current Operational Support
Systems, which use many different repositories that are
each optimized for different uses. Optionally, a second set
of formal transformations can be applied to translate the
result into a set of vendor-specific data models.

Figure 1. A Unifying Information Model

The usage of an information model helps synchronize
syntactical differences. However, it is not able to
represent the different semantics associated with each
vendor-specific device or technology variation. This is
because an information model does not use a formal
language, and hence has no innate ability to learn and
reason about data.

Context-aware services exacerbate this problem, since
the same data can mean different things and require
different remediation actions for two different contexts.
For example, a configuration management application
and a billing application can each define the concept of a
“user” in different ways, having different attributes and
datatypes; this complicates the exchange of management
data and, more importantly, understanding the
significance of those data. More importantly, current
network management and business support systems have

Data Model
(platform 1)

Data Model
(platform n)

Information Model

Data Model
(vendor 1)

Data Model
(vendor m)

Standard

Standard

Vendor-Specific
Implementation

difficulty relating a term that spans different domains. For
example, the term Service Level Agreement (SLA) refers
to contractual obligations and revenue for business
people, but implies different classification and
conditioning of traffic for network people.

This paper describes a novel knowledge representation
process that augments knowledge extracted from
information models with knowledge extracted from
ontologies. This enables the system to construct a
machine understandable representation of diverse types of
knowledge, and thus harmonize information from
different sources to construct a more complete
representation of the current context. We use the
FOCALE autonomic architecture [6] for managing
services using context-aware policy rules. FOCALE uses
a dynamically updateable knowledge base, meaning that
the system is able to add, remove, and edit knowledge at
runtime.

The organization of the rest of this paper is as follows.
Section 2 briefly summarizes our previous work in
information integration and reuse in the context of the
FOCALE autonomic architecture. Section 3 describes
new extensions to this process. Section 4 discusses our
implementation, and Section 5 summarizes the paper.

2. Information Integration and Reuse

The FOCALE effort is developing an autonomic
management architecture that can simplify the
management processes for the network operator by
automating and distributing the decision making
processes involved in network operation [6]. In particular,
FOCALE uses a combination of models and ontologies to
realize information integration and reuse. A simplified
architectural picture of FOCALE is shown in Figure 2.

Current State =
Desired State?

Managed

Resource
Managed
Resource

Analyze Data

and Events
Analyse Data

and Events

YES

NO

Model -Based

Translation

Control

Control

Control

Control

Policy Manager

Policies control application of intelligence

Policy Manager

Policies control application of intelligence

Context ManagerContext Manager

Ontological
Comparison

Reasoning and
Learning

Control

Autonomic Manager

Translation
Model-Based Determine

Actual State

Configuration(s))
Define New Device

Figure 2. The FOCALE Autonomic Architecture

The FOCALE autonomic network architecture is a
model-driven architecture [7]. It can dynamically generate
code to (re)configure managed elements; the automation
of complex, manually-intensive configuration tasks that
are prone to error is a primary motivation for autonomic
systems. FOCALE stands for Foundation – Observe –
Compare – Act – Learn – rEason, which describes its
novel control loop.

There are three areas of information integration and
reuse in the above FOCALE architecture. First, sensor
data is vendor-specific, and hence the data from one
network vendor device cannot be easily integrated with
data from a different network vendor device. Section 2.1
describes how our framework solves this problem.
Section 2.2 addresses a related problem: how to translate
from a vendor-neutral form of commands to a vendor-
specific one. Finally, section 2.3 describes how we reuse
information in FOCALE.

2.1 Translating Heterogeneous to Common Data

Sensor data is retrieved from the managed object and
fed to a model-based translation process, which translates
vendor- and device-specific data into a normalized form
in XML. A set of parsers, constructed using the Factory
Pattern [8], convert vendor-specific data to a normalized
form. This is then matched against data contained in
models and ontologies using structural matching and
pattern matching, as shown in Figure 3 below.

Figure 3. Representing Knowledge in FOCALE

The commands (and management data) of the firewall
and router are both represented in an information model.
Similar information are represented in associated
ontologies. In step 1 of Figure 3, a lexicon is used to
relate data describing the firewall (in the information
model) to a consensual set of terms, which are then used
to form a mapping between terms in the information
model and concepts in the ontologies. Specifically, model
data describing the firewall are augmented with meanings
from ontologies in step 2 using one or more linguistic
relationships, such as synonyms. For example, routers,
firewalls, and switches are different types of devices, but
share common functions, such as dropping and
forwarding traffic. These generic terms (dropping and
forwarding traffic) can be “attached” to our managed
elements independent of vendor. Since network
management represents a specific domain, we also define
a set of custom relationships, such as “is similar to”, to
perform specialized mappings. An example of this type of
mapping is to define the semantic similarity between a set
of m commands from one vendor with a set of n
commands from a different vendor.

Firewall
Router

Information Models Ontologies

Universal Lexicon

1

2

3 4 5

Most network data is either modeled using
information/data models or can be easily transformed into
such a model. However, these models, which are built
using either SNMP or the Unified Modeling Language
(UML) [9], are not able to define semantics, because (1)
neither are formal languages, and (2) neither uses formal
logic. This also means that UML as well as SNMP
models are not able to be used for machine-based learning
and reasoning. Ontologies use first order logic or
description logic. Hence, we use models to reuse existing
data, and use ontologies to reason about those data.

Step 3 uses semantic relationships (an example of such
an algorithm is given in [10]) to relate concepts
describing the firewall to concepts describing the router.
For example, the verb “accept” can be defined as both a
synonym of the verb “forward” as well as an antonym of
the verb “drop”. Hence, the system now knows that the
verb “accept” in the firewall language performs the same
function as the verb “forward” in the router language (and
also that it performs the opposite function of the verb
“drop” in the router language). Step 4 then ensures that
these relationships are entered in the lexicon, and step 5
uses these relationships to search for additional model
elements (e.g., classes and associations) in the
information model for the router. The process iterates as
necessary. This knowledge can then be used to generate
the appropriate CLI commands that are issued to
reconfigure each device.

Data from network devices are structured in ways that
make sense to the manufacturer; however, those
structures are usually not efficient for information sharing
and reuse, and are different for each product. We map
raw data from multiple objects into a set of classes in
DEN-ng, which uses classification theory [13] to arrange
data into a set of reusable object-oriented concepts. For
example, the concept of a “card” is applicable to a wide
variety of devices, such as servers, firewalls, laptops, and
routers, even though those types of devices can be used
for very different purposes. An information model builds
a set of classes that model the concept of a card as a
reusable object, enabling it to be modeled once and then
reused for different applications. Different types of cards
are modeled as subclasses, as are refinements of a
common concept that is specific to a particular vendor or
technology.

2.2 Generating Vendor-Specific Commands

In FOCALE, Finite State Machines (FSMs) are
constructed from DEN-ng model elements (e.g., classes,
associations, attributes, and constraints). Nodes in a
FOCALE FSM represent state; each state has an
associated set of one or more configuration actions that
define the configuration of a managed entity for that
particular state. Edges represent state transitions, and

imply permission to change the configuration to change
the state of a managed entity.

Once the sensor data is translated into a normalized
form, it is then analyzed to determine the current state of
the managed entity (e.g., a router). The current state of
the managed entity is then compared to the desired state
from the appropriate FSM. Static behavior is
“programmed” into FOCALE by designing a set of
FSMs; dynamic behavior is defined by altering the state
of one or more managed entities. We use the DEN-ng
information model to construct interoperable context-
aware policy rule definitions [11][12] to govern the
autonomic control loop. This enables context to select the
set of policies that are applicable; policies are used to then
define the functionality allowed. As context changes,
policies change, and system functionality is adjusted
accordingly.

In summary, FOCALE defines a normalized network
management lingua franca by mapping vendor-specific
data and commands to a vendor-neutral form based on a
novel combination of information and data models
augmented by ontologies. It then uses a model-based
translation function to interact with vendor-specific
languages and programming models.

2.3 Information Reuse in FOCALE

FOCALE goes beyond the use of models and
ontologies to define reusable information. FOCALE
supports a dynamically updateable knowledge base – one
that can reflect new knowledge at runtime as new
knowledge is discovered. Our approach supports this
requirement by using semantic reasoning to examine
sensor data (as well as other types of data) to see if it is
new as well as to determine if it is different (and
especially, if it leads to different conclusions) than that
already stored in the knowledge base. In either case, the
semantic reasoning uses first order logic to reason about
the validity of the new or changed information with
respect to the rest of the knowledge base. If the new or
changed information is valid, the system must determine
how much of the knowledge base needs to be updated.

The axioms and theories present in the existing
knowledge base are used to validate if the new or
changed data makes logical sense. This makes use of
existing data and relationships in the knowledge base to
build assertions and other types of queries to test the
implications of the new or changed data. Once the new or
changed data are determined to be valid, then additional
logic checks the relationships of the changed data to see if
those data also need to be changed. Similarly, existing
axioms and theories are applied to the new data to
hypothesize new relationships.

In general, the new or changed data will either be able
to be immediately verified through issuing queries that

verify one or more hypotheses about the new or changed
data, or they will need further proof. In the former case,
the new or changed data are immediately added to the
knowledge base. Otherwise, they are marked for
verification. This is beyond the scope of this paper;
however, the essential point is that this set of processes
enables the knowledge base for our system to evolve with
experience.

Both this and the model-based translation function use
the notion of semantic relatedness [14] to determine the
relevance as well as the validity of the sensor information
as well as inferences derived from those data. Semantic
relatedness enables entities that are semantically related
using synonymy (e.g., “bank” and “lending institution”),
antonymy (e.g., “accept” and “reject”), and other lexical
relationships such as meronymy (e.g., court is a part of
government), as well as defined associations (e.g., router
uses protocol). Our original work in this area used
linguistic analysis; however, this has a high associated
degree of computational complexity. We are thus
investigating other means, such as using WordNet [15],
which provides a set of APIs for computing common
linguistic relations, as well as structural matching
algorithms. This enables us to move from offline
applications, which require on the order of 2-6 hours of
computation, to more near-real-time applications.

FOCALE develops and uses a library of models and
coded behaviors, much as a library of string processing
functions is used by a programming language. This
library is made reusable by realizing it in the form of
objects, supported by both models and ontologies. Library
behaviors are associated with the application of policy
actions, which in turn are selected by a particular context
as previously described.

FOCALE uses the concept of the Policy Continuum
[4][16][17], which enables policies written using
terminology and concepts for one domain, such as
business analysts, to be translated to policies written
using a different set of terminology and concepts for
another domain, such as programmers. This enables
context-aware policies to be used to orchestrate behavior
for business goals, social interaction, and other forms of
interaction.

3. Our Knowledge Representation Process

We have extended the above process in two important
ways. First, we have formalized the process described in
Section 2 using graph theory; the nodes of the graph
contain knowledge extracted from information or data
models as well as from ontologies, while the edges of the
graph are defined as semantic relationships that relate
model information to ontological information using
various semantic and/or linguistic relationships that each
have an associated strength that signifies the semantic

relatedness of that relationship. We construct a
multigraph from model and ontological data. For
example, a switch is more closely related to a router than
a laptop is, even though all three can forward traffic.

We then combined this structure with the notion of the
Policy Continuum to define a new concept, the
Knowledge Continuum [18]. This is shown in Figure 4.

Figure 4. The Knowledge Continuum

Similar to the Policy Continuum, the Knowledge
Continuum asserts that in order to ensure the correct
understanding of knowledge at one abstraction, and to be
able to relate that abstraction to other views, knowledge
itself must be represented in a series of views, where each
view has meaning in a specific frame of reference, and
where each successive view is generated from a
transformation being applied to the preceding view. Both
continuums are implemented as pure transformation
pipelines [19]. This is a forward engineering approach in
which any given source model is first restructured in the
transformation pipeline according to a formal language
and formal transformation theory; this is required in order
to prove that the transformation(s) performed preserve the
semantics of the models. Transformations are then
applied to the resulting formal language, enabling
knowledge to be expressed in multiple forms and fused
into one common understanding.

Within each level of the Knowledge Continuum,
factual and inferred knowledge can exist that is
procedural or declarative. Knowledge is assigned to a
particular level in the Knowledge Continuum based on
whether it is business or technical in nature, and whether
it is device- and technology-specific or not. This is used
to guide the modelling of knowledge, using information
models and ontologies, to ensure that all key concepts
from all constituencies in a managed system are
represented.

4. Implementation of Knowledge Extensions

There is a profound difference between modeling a
fact that is observed or measured and modeling a fact that
is inferred. Facts that are observed or measured often do
not need additional reasoning performed on them. For

Business View: Business Knowledge, device- and technology-independent

System View: Business Knowledge translated into technical terminology,
still device- and technology-independent

Administrator View: Technical Knowledge, device-independent, technology-specific

Device View: Technical Knowledge, device- and technology-specific

Instance View: Instances of Technical Knowledge

example, if the speed of a device interface is measured to
be 100 Megabits per second, that measurement
completely defines the fact. In stark contrast, inferences
can only exist by having reasoning performed to create
them. Thus, our approach defines different
representations for each.

Our knowledge processing approach must be capable
of representing both procedural and declarative
knowledge from a variety of disparate sources, extracting
knowledge from those data, transforming the data from
each source into knowledge, and harmonizing the result.
We define two sets of processes: (1) a transformation of
data into information, (2) a subsequent transformation of
information into knowledge. This enables knowledge to
be defined in a reusable, scalable way.

Data is characterized as observable and possibly
measurable raw values that signal something of interest.
Data have no meaning - they are simply raw values. Data
is transformed into information when meaning can be
attached to data. The process of transforming information
into knowledge attaches purpose, forms a more complete
context, and provides the potential to generate action.

For example, a measured value of 17 is simply a
scalar. If that value can be associated with a set of
enumerated values to give the value 17 a particular
meaning (e.g., “problem”), the system has now succeeded
in attaching a meaning to the scalar value. If the system
can add further details, such as what the problem refers to
and what a possible solution to this problem could be, the
semantics are now made explicit, and important
additional information and knowledge can now be
generated (e.g., a skill set could be inferred as required to
solve the problem whose value was denoted as 17). This
systematic enrichment of semantics is critical to defining
knowledge that can be acted upon. This is reflected in the
three top-level hierarchies (i.e., all classes are subclassed
from one of these three classes) of the DEN-ng
information model in Figure 5.

Figure 5. Part of the DEN-ng Top-Level Model

In DEN-ng, a fact represents observations and/or
measurements that can be collected, stated, computed, or
otherwise proven, and are modeled as classes that are
distinct from classes that model inferred knowledge. Facts
are represented in DEN-ng as subclasses of Entity, and
can be modified by considerations such as accuracy, the
age of the measurement, the context of the measurement,
who or what measured the value (i.e., a “confidence”
factor which could in turn be modified by a “reputation”),
and other application-specific considerations. These and
other semantics are defined by appropriate MetaData

subclasses and associated with facts; this enables different
Entities to have different MetaData for different contexts.
Note that since Entities and MetaData are both objects,
facts and metadata can be reused as appropriate.

Inferred knowledge is modeled using different classes
from those used to model factual knowledge. This is
because of three reasons. First, facts can be intrinsic parts
of an Entity, whereas inferred knowledge is not. Second,
the data type and format of a fact are predefined by the
type of observation or measurement being performed; in
contrast, the data type and format of inferred knowledge
can change, because both are dependent on the type of
inference algorithm used. Third, since the type and the
amount of inferred knowledge can change, DEN-ng uses
containers to store inferred knowledge, which enables
applications to place knowledge that is computed at
runtime into an appropriate container without being
bound by a rigid data structure.

Figure 6 shows the six attributes of the class container
used to store inferred knowledge. These attributes ensure
that data can be stored and understood in an interoperable
way. The typeOfContainer attribute defines which type of
container is used to house this information, enabling the
developer to attach application-specific metadata to
different container types. The inferredContent attribute
contains the inferred data, and the inferredContentInfo
attribute defines how to interpret the inferredContent
data. The inferredReferences attribute is an array of
strings, one for each reference to an external knowledge
source that is required to use this knowledge. The
inferredResult attribute defines a set of standard result
codes that can be used so that other applications that
cannot understand the inferred data can substitute that
data with an equivalent result. Finally, the appSource
attribute is an array of strings, where each string defines a
unique identifier that identifies the application that
produced the inferred data. This is useful for tracing the
results of the inference operation in case it does not agree
with other data.

Figure 6. Representing Inferred Knowledge

Currently, our knowledge representation uses graphs
and custom data structures to combine knowledge
extracted from models and ontologies. This enables
existing tools to be used to manage and represent
knowledge. Specifically, we use Rational Rose v7.0.0.0
for information modeling, and Protégé 3.4 beta for

Application
Application

Application
Inferred

Knowledge
Generic Class

Container

typeOfContainer: Integer
inferredContent: OctetString
inferredContentInfo: String
inferredReferences: SequenceOf String
inferredResult: Integer
appSource: SequenceOf String

Value MetaData

0..n0..n 0..n0..n

ValueHasMetaDataEntity

0..n0..n 0..n0..n

EntityHasAssociatedValue

0..n1..n 0..n1..n

EntityHasMetaData

ontology design. By transforming existing knowledge
from model elements and ontologies into a common
format (graphs), it becomes possible to use established
linguistic relationships to associate knowledge from
model elements with knowledge from ontologies (and
vice-versa). This approach lends itself to reusing existing
languages, as well as developing new languages.

We chose DEN-ng as the model to integrate into
FOCALE because other efforts, such as CIM [20], had a
number of problems that make it hard to use with a
model-driven approach, especially one that also uses
ontologies. For example, CIM does not use patterns or
classification theory, so it is very difficult to relate CIM
objects to ontological concepts. CIM has its own
metamodel which is not UML compliant. CIM has no
context model and no metadata model, which are two of
the strong points of the DEN-ng design.

Our experiments are currently using different Cisco
devices and software releases, which were modeled by
extending the DEN-ng model to represent IOS commands
as well as hardware, protocol, and other features. We
have done limited testing with Juniper and Nortel devices
as well to validate our mapping approach.

6. Summary and Future Work

We have described a novel approach to integrating and
reusing information of various types for network
management applications. This approach is applicable to
other domains, and should be somewhat easier to
implement, as most other domains do not have the
inherent data heterogeneity and programming models that
are present in network management. Future work will
include reducing our current development environment to
a single platform that uses a new symbology that is
optimised for knowledge engineering, as well as
developing new reasoning approaches that are
computational simpler and hence amenable to near-real-
time operation.

Acknowledgment

This work is partially sponsored by the WCU (World

Class University) program through the Korea Science and
Engineering Foundation funded by the Ministry of
Education, Science and Technology (Project No. R31-
2008-000-10100-0).

10. References

[1] An example of a CLI can be found here (accessed 27

February 2009): http://www.cisco.com/warp/cpropub/45/
tutorial.htm

[2] D. Harrington, R. Preshun, B. Wijnen, “An Architecture
for Describing Simple Network Management Protocol
Management Frameworks”, RFC3411, December, 2002.

[3] M. MacFaden, D. Partain, J. Saperia, W. Tackabury,
“Configuring Networks and Devices with Simple Network
Management Protocol (SNMP)”, RFC3512, April 2003

[4] J. Strassner, “Autonomic Networking – Theory and
Practice”, 20th Network Operations and Management
Symposium 2008 Tutorial, Brazil, April 7, 2008

[5] J. Strassner, “DEN-ng Model Overview”, Joint ACF,
EMANICS, and AutoI Workshop on Autonomic
Management in the Future Internet, May 14, 2008

[6] J. Strassner, N. Agoulmine, E. Lehtihet, “FOCALE – A
Novel Autonomic Networking Architecture”, ITSSA
Journal, Vol. 3, No. 1, May 2007, pages 64-79, ISSN 1751-
1461

[7] www.omg.org/mda (accessed 27 February 2009)
[8] T. Cohen, J. Gil, “Better Construction with Factories”,

Journal of Object Technology, Vol. 6, No. 6, pages 103-
123, 2007

[9] Object Management Group: OMG Unified Modeling
Language Specification, OMG, Version 1.5, March, 2003

[10] A. Wong, P. Ray, N. Parameswaran, J. Strassner,
“Ontology Mapping for the Interoperability Problem in
Network Management”, IEEE Journal on Selected Areas in
Communications, Vol. 23, No. 10, October 2005, pages
2058 – 2068

[11] J. Strassner, J.N. de Souza, D. Raymer, S. Samudrala, S.
Davy, K. Barrett, “The design of a novel context-aware
policy model to support machine-based learning and
reasoning”, Journal of Cluster Computing, Vol 12, Issue 1,
pages 17-43, March, 2009

[12] J. Strassner, J.N. de Souza, S. van der Meer, S. Davy, K.
Barrett, D. Raymer, S. Samudrala, “The Design of a New
Policy Model to Support Ontology-Driven Reasoning for
Autonomic Networking”, Journal of Network and Systems
Management, Volume 17, Number 1, March 2009

[13] J. Parsons, Y. Wand, “Emancipating Instances from the
Tyranny of Classes in Information Modeling”, ACM
Transactions on Database Systems, Vol. 25, Issue 2, June
2000, pages 228-268

[14] A. Budanitsky, “Lexical semantic relatedness and its
application in natural language processing” Technical
Report CSRG390, University of Toronto, 1999

[15] http://wordnet.princeton.edu/
[16] J. Strassner, “Policy Based Network Management”,

Morgan Kaufman, ISBN 1-55860-859-1
[17] S. Davy, B. Jennings, J. Strassner, “The Policy Continuum

– A Formal Model”, in Proc. of the 2nd International IEEE
Workshop on Modelling Autonomic Communications
Environments (MACE), Multlicon Lecture Notes – No. 6,
Multicon, Berlin, 2007, pages 65-78

[18] J. Strassner, “Enabling Autonomic Network Management
Decisions Using a Novel Semantic Representation and
Reasoning Approach”, Ph.D. thesis, 2008

[19] E. Posnak, R.G. Lavender, H. Vin. “Adaptive pipeline: an
object structural pattern for adaptive applications”, 3rd
Pattern Languages of Programming conference, 1996

[20] http://www.dmtf.org/standards/cim/cim_schema_v2210/

