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Abstract 

 
Most service and network management applications 

are developed to use vendor- and device-specific 
management data. These data are produced from 
different languages, and hence can have different 
representations of the same concept. We define a novel 
knowledge representation and mapping mechanism that 
uses ontological concepts and relations to generate a 
formal description for the Directory Enabled Networks 
new generation information model. This endows the 
model with the necessary semantic richness and 
formalism to represent different types of information for 
use in network management operations. Data is extracted 
from models, and is used to represent facts. These facts 
are semantically related to concepts and relations from 
one or more ontologies using a lexicon. A new data 
structure is then built by combining knowledge extracted 
from model elements with knowledge extracted from 
ontological elements. Semantic relatedness measures are 
then used to associate modeled data with ontological 
data. Early results are also presented. 
 
Keywords: information integration, information model, 
information reuse, ontology, semantic relatedness 
 
1. Introduction 
 

Most network management applications use data 
obtained from vendor-specific Command Line Interface 
(CLIs) [1] and/or data conformant to the Structure of 
Management Information (SMI) [2][3]. While SMI is a 
standard, the vast majority of network management data 
are vendor-, technology-, and sometimes platform-
specific. These data are low-level in nature, and for 
example are used to describe the health of a device 
interface. There are no standards for representing simple 
higher-level concepts, like a Virtual Private Network, let 
alone business concepts (such as a Service Level 
Agreement), because there are no standard CLI or SMI 
building blocks at this level of abstraction. This means 
that there is no standard way to build network 
management applications, and hence there is no easy way 
to ensure that the services and resources offered by the 
network are consistent with the business goals of the 
organization(s) owning and using the network. 

The root cause of the above problems is the lack of an 
interoperable knowledge representation and associated 
semantics for network management. 

The use of an information model helps rationalize the 
diverse set of vendor-specific data models used. Figure 1 
shows such an approach [4], in which a single 
information model (which is independent of data, 
platform, language, and protocol) is created that defines a 
standard set of managed objects, attributes, relationships, 
and other elements. We use the DEN-ng information 
model [4][5] for exactly this purpose. A set of formal 
transformations is then applied to translate knowledge 
from the information model to a standards-based data 
model (e.g., a relational database using SQL92). This 
meets the demand of current Operational Support 
Systems, which use many different repositories that are 
each optimized for different uses. Optionally, a second set 
of formal transformations can be applied to translate the 
result into a set of vendor-specific data models. 

 

 

Figure 1.  A Unifying Information Model 

The usage of an information model helps synchronize 
syntactical differences. However, it is not able to 
represent the different semantics associated with each 
vendor-specific device or technology variation. This is 
because an information model does not use a formal 
language, and hence has no innate ability to learn and 
reason about data. 

Context-aware services exacerbate this problem, since 
the same data can mean different things and require 
different remediation actions for two different contexts. 
For example, a configuration management application 
and a billing application can each define the concept of a 
“user” in different ways, having different attributes and 
datatypes; this complicates the exchange of management 
data and, more importantly, understanding the 
significance of those data. More importantly, current 
network management and business support systems have 
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difficulty relating a term that spans different domains. For 
example, the term Service Level Agreement (SLA) refers 
to contractual obligations and revenue for business 
people, but implies different classification and 
conditioning of traffic for network people. 

This paper describes a novel knowledge representation 
process that augments knowledge extracted from 
information models with knowledge extracted from 
ontologies. This enables the system to construct a 
machine understandable representation of diverse types of 
knowledge, and thus harmonize information from 
different sources to construct a more complete 
representation of the current context. We use the 
FOCALE autonomic architecture [6] for managing 
services using context-aware policy rules. FOCALE uses 
a dynamically updateable knowledge base, meaning that 
the system is able to add, remove, and edit knowledge at 
runtime. 

The organization of the rest of this paper is as follows. 
Section 2 briefly summarizes our previous work in 
information integration and reuse in the context of the 
FOCALE autonomic architecture. Section 3 describes 
new extensions to this process. Section 4 discusses our 
implementation, and Section 5 summarizes the paper. 
 
2. Information Integration and Reuse 
 

The FOCALE effort is developing an autonomic 
management architecture that can simplify the 
management processes for the network operator by 
automating and distributing the decision making 
processes involved in network operation [6]. In particular, 
FOCALE uses a combination of models and ontologies to 
realize information integration and reuse. A simplified 
architectural picture of FOCALE is shown in Figure 2. 
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Figure 2. The FOCALE Autonomic Architecture 

The FOCALE autonomic network architecture is a 
model-driven architecture [7]. It can dynamically generate 
code to (re)configure managed elements; the automation 
of complex, manually-intensive configuration tasks that 
are prone to error is a primary motivation for autonomic 
systems. FOCALE stands for Foundation – Observe – 
Compare – Act – Learn – rEason, which describes its 
novel control loop. 

There are three areas of information integration and 
reuse in the above FOCALE architecture. First, sensor 
data is vendor-specific, and hence the data from one 
network vendor device cannot be easily integrated with 
data from a different network vendor device. Section 2.1 
describes how our framework solves this problem. 
Section 2.2 addresses a related problem: how to translate 
from a vendor-neutral form of commands to a vendor-
specific one. Finally, section 2.3 describes how we reuse 
information in FOCALE. 

 
2.1  Translating Heterogeneous to Common Data 
 

Sensor data is retrieved from the managed object and 
fed to a model-based translation process, which translates 
vendor- and device-specific data into a normalized form 
in XML. A set of parsers, constructed using the Factory 
Pattern [8], convert vendor-specific data to a normalized 
form. This is then matched against data contained in 
models and ontologies using structural matching and 
pattern matching, as shown in Figure 3 below. 

 

Figure 3. Representing Knowledge in FOCALE 

The commands (and management data) of the firewall 
and router are both represented in an information model. 
Similar information are represented in associated 
ontologies. In step 1 of Figure 3, a lexicon is used to 
relate data describing the firewall (in the information 
model) to a consensual set of terms, which are then used 
to form a mapping between terms in the information 
model and concepts in the ontologies. Specifically, model 
data describing the firewall are augmented with meanings 
from ontologies in step 2 using one or more linguistic 
relationships, such as synonyms. For example, routers, 
firewalls, and switches are different types of devices, but 
share common functions, such as dropping and 
forwarding traffic. These generic terms (dropping and 
forwarding traffic) can be “attached” to our managed 
elements independent of vendor. Since network 
management represents a specific domain, we also define 
a set of custom relationships, such as “is similar to”, to 
perform specialized mappings. An example of this type of 
mapping is to define the semantic similarity between a set 
of m commands from one vendor with a set of n 
commands from a different vendor. 
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Most network data is either modeled using 
information/data models or can be easily transformed into 
such a model. However, these models, which are built 
using either SNMP or the Unified Modeling Language 
(UML) [9], are not able to define semantics, because (1) 
neither are formal languages, and (2) neither uses formal 
logic. This also means that UML as well as SNMP 
models are not able to be used for machine-based learning 
and reasoning. Ontologies use first order logic or 
description logic. Hence, we use models to reuse existing 
data, and use ontologies to reason about those data. 

Step 3 uses semantic relationships (an example of such 
an algorithm is given in [10]) to relate concepts 
describing the firewall to concepts describing the router. 
For example, the verb “accept” can be defined as both a 
synonym of the verb “forward” as well as an antonym of 
the verb “drop”. Hence, the system now knows that the 
verb “accept” in the firewall language performs the same 
function as the verb “forward” in the router language (and 
also that it performs the opposite function of the verb 
“drop” in the router language). Step 4 then ensures that 
these relationships are entered in the lexicon, and step 5 
uses these relationships to search for additional model 
elements (e.g., classes and associations) in the 
information model for the router. The process iterates as 
necessary. This knowledge can then be used to generate 
the appropriate CLI commands that are issued to 
reconfigure each device. 

Data from network devices are structured in ways that 
make sense to the manufacturer; however, those 
structures are usually not efficient for information sharing 
and reuse, and are different for each product. We map 
raw data from multiple objects into a set of classes in 
DEN-ng, which uses classification theory [13] to arrange 
data into a set of reusable object-oriented concepts. For 
example, the concept of a “card” is applicable to a wide 
variety of devices, such as servers, firewalls, laptops, and 
routers, even though those types of devices can be used 
for very different purposes. An information model builds 
a set of classes that model the concept of a card as a 
reusable object, enabling it to be modeled once and then 
reused for different applications. Different types of cards 
are modeled as subclasses, as are refinements of a 
common concept that is specific to a particular vendor or 
technology. 
 
2.2  Generating Vendor-Specific Commands 
 

In FOCALE, Finite State Machines (FSMs) are 
constructed from DEN-ng model elements (e.g., classes, 
associations, attributes, and constraints). Nodes in a 
FOCALE FSM represent state; each state has an 
associated set of one or more configuration actions that 
define the configuration of a managed entity for that 
particular state. Edges represent state transitions, and 

imply permission to change the configuration to change 
the state of a managed entity. 

Once the sensor data is translated into a normalized 
form, it is then analyzed to determine the current state of 
the managed entity (e.g., a router). The current state of 
the managed entity is then compared to the desired state 
from the appropriate FSM. Static behavior is 
“programmed” into FOCALE by designing a set of 
FSMs; dynamic behavior is defined by altering the state 
of one or more managed entities. We use the DEN-ng 
information model to construct interoperable context-
aware policy rule definitions [11][12] to govern the 
autonomic control loop. This enables context to select the 
set of policies that are applicable; policies are used to then 
define the functionality allowed. As context changes, 
policies change, and system functionality is adjusted 
accordingly. 

In summary, FOCALE defines a normalized network 
management lingua franca by mapping vendor-specific 
data and commands to a vendor-neutral form based on a 
novel combination of information and data models 
augmented by ontologies. It then uses a model-based 
translation function to interact with vendor-specific 
languages and programming models. 
 
2.3  Information Reuse in FOCALE 
 

FOCALE goes beyond the use of models and 
ontologies to define reusable information. FOCALE 
supports a dynamically updateable knowledge base – one 
that can reflect new knowledge at runtime as new 
knowledge is discovered. Our approach supports this 
requirement by using semantic reasoning to examine 
sensor data (as well as other types of data) to see if it is 
new as well as to determine if it is different (and 
especially, if it leads to different conclusions) than that 
already stored in the knowledge base. In either case, the 
semantic reasoning uses first order logic to reason about 
the validity of the new or changed information with 
respect to the rest of the knowledge base. If the new or 
changed information is valid, the system must determine 
how much of the knowledge base needs to be updated. 

The axioms and theories present in the existing 
knowledge base are used to validate if the new or 
changed data makes logical sense. This makes use of 
existing data and relationships in the knowledge base to 
build assertions and other types of queries to test the 
implications of the new or changed data. Once the new or 
changed data are determined to be valid, then additional 
logic checks the relationships of the changed data to see if 
those data also need to be changed. Similarly, existing 
axioms and theories are applied to the new data to 
hypothesize new relationships. 

In general, the new or changed data will either be able 
to be immediately verified through issuing queries that 



verify one or more hypotheses about the new or changed 
data, or they will need further proof. In the former case, 
the new or changed data are immediately added to the 
knowledge base. Otherwise, they are marked for 
verification. This is beyond the scope of this paper; 
however, the essential point is that this set of processes 
enables the knowledge base for our system to evolve with 
experience. 

Both this and the model-based translation function use 
the notion of semantic relatedness [14] to determine the 
relevance as well as the validity of the sensor information 
as well as inferences derived from those data. Semantic 
relatedness enables entities that are semantically related 
using synonymy (e.g., “bank” and “lending institution”), 
antonymy (e.g., “accept” and “reject”), and other lexical 
relationships such as meronymy (e.g., court is a part of 
government), as well as defined associations (e.g., router 
uses protocol). Our original work in this area used 
linguistic analysis; however, this has a high associated 
degree of computational complexity. We are thus 
investigating other means, such as using WordNet [15], 
which provides a set of APIs for computing common 
linguistic relations, as well as structural matching 
algorithms. This enables us to move from offline 
applications, which require on the order of 2-6 hours of 
computation, to more near-real-time applications. 

FOCALE develops and uses a library of models and 
coded behaviors, much as a library of string processing 
functions is used by a programming language. This 
library is made reusable by realizing it in the form of 
objects, supported by both models and ontologies. Library 
behaviors are associated with the application of policy 
actions, which in turn are selected by a particular context 
as previously described. 

FOCALE uses the concept of the Policy Continuum 
[4][16][17], which enables policies written using 
terminology and concepts for one domain, such as 
business analysts, to be translated to policies written 
using a different set of terminology and concepts for 
another domain, such as programmers. This enables 
context-aware policies to be used to orchestrate behavior 
for business goals, social interaction, and other forms of 
interaction. 

 
3. Our Knowledge Representation Process 
 

We have extended the above process in two important 
ways. First, we have formalized the process described in 
Section 2 using graph theory; the nodes of the graph 
contain knowledge extracted from information or data 
models as well as from ontologies, while the edges of the 
graph are defined as semantic relationships that relate 
model information to ontological information using 
various semantic and/or linguistic relationships that each 
have an associated strength that signifies the semantic 

relatedness of that relationship. We construct a 
multigraph from model and ontological data. For 
example, a switch is more closely related to a router than 
a laptop is, even though all three can forward traffic. 

We then combined this structure with the notion of the 
Policy Continuum to define a new concept, the 
Knowledge Continuum [18]. This is shown in Figure 4. 

 

Figure 4. The Knowledge Continuum 

Similar to the Policy Continuum, the Knowledge 
Continuum asserts that in order to ensure the correct 
understanding of knowledge at one abstraction, and to be 
able to relate that abstraction to other views, knowledge 
itself must be represented in a series of views, where each 
view has meaning in a specific frame of reference, and 
where each successive view is generated from a 
transformation being applied to the preceding view. Both 
continuums are implemented as pure transformation 
pipelines [19]. This is a forward engineering approach in 
which any given source model is first restructured in the 
transformation pipeline according to a formal language 
and formal transformation theory; this is required in order 
to prove that the transformation(s) performed preserve the 
semantics of the models. Transformations are then 
applied to the resulting formal language, enabling 
knowledge to be expressed in multiple forms and fused 
into one common understanding. 

Within each level of the Knowledge Continuum, 
factual and inferred knowledge can exist that is 
procedural or declarative. Knowledge is assigned to a 
particular level in the Knowledge Continuum based on 
whether it is business or technical in nature, and whether 
it is device- and technology-specific or not. This is used 
to guide the modelling of knowledge, using information 
models and ontologies, to ensure that all key concepts 
from all constituencies in a managed system are 
represented. 
 
4. Implementation of Knowledge Extensions 
 

There is a profound difference between modeling a 
fact that is observed or measured and modeling a fact that 
is inferred. Facts that are observed or measured often do 
not need additional reasoning performed on them. For 
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example, if the speed of a device interface is measured to 
be 100 Megabits per second, that measurement 
completely defines the fact. In stark contrast, inferences 
can only exist by having reasoning performed to create 
them. Thus, our approach defines different 
representations for each. 

Our knowledge processing approach must be capable 
of representing both procedural and declarative 
knowledge from a variety of disparate sources, extracting 
knowledge from those data, transforming the data from 
each source into knowledge, and harmonizing the result. 
We define two sets of processes: (1) a transformation of 
data into information, (2) a subsequent transformation of 
information into knowledge. This enables knowledge to 
be defined in a reusable, scalable way. 

Data is characterized as observable and possibly 
measurable raw values that signal something of interest. 
Data have no meaning - they are simply raw values. Data 
is transformed into information when meaning can be 
attached to data. The process of transforming information 
into knowledge attaches purpose, forms a more complete 
context, and provides the potential to generate action. 

For example, a measured value of 17 is simply a 
scalar. If that value can be associated with a set of 
enumerated values to give the value 17 a particular 
meaning (e.g., “problem”), the system has now succeeded 
in attaching a meaning to the scalar value. If the system 
can add further details, such as what the problem refers to 
and what a possible solution to this problem could be, the 
semantics are now made explicit, and important 
additional information and knowledge can now be 
generated (e.g., a skill set could be inferred as required to 
solve the problem whose value was denoted as 17). This 
systematic enrichment of semantics is critical to defining 
knowledge that can be acted upon. This is reflected in the 
three top-level hierarchies (i.e., all classes are subclassed 
from one of these three classes) of the DEN-ng 
information model in Figure 5. 

 

Figure 5. Part of the DEN-ng Top-Level Model 

In DEN-ng, a fact represents observations and/or 
measurements that can be collected, stated, computed, or 
otherwise proven, and are modeled as classes that are 
distinct from classes that model inferred knowledge. Facts 
are represented in DEN-ng as subclasses of Entity, and 
can be modified by considerations such as accuracy, the 
age of the measurement, the context of the measurement, 
who or what measured the value (i.e., a “confidence” 
factor which could in turn be modified by a “reputation”), 
and other application-specific considerations. These and 
other semantics are defined by appropriate MetaData 

subclasses and associated with facts; this enables different 
Entities to have different MetaData for different contexts. 
Note that since Entities and MetaData are both objects, 
facts and metadata can be reused as appropriate. 

Inferred knowledge is modeled using different classes 
from those used to model factual knowledge. This is 
because of three reasons. First, facts can be intrinsic parts 
of an Entity, whereas inferred knowledge is not. Second, 
the data type and format of a fact are predefined by the 
type of observation or measurement being performed; in 
contrast, the data type and format of inferred knowledge 
can change, because both are dependent on the type of 
inference algorithm used. Third, since the type and the 
amount of inferred knowledge can change, DEN-ng uses 
containers to store inferred knowledge, which enables 
applications to place knowledge that is computed at 
runtime into an appropriate container without being 
bound by a rigid data structure. 

Figure 6 shows the six attributes of the class container 
used to store inferred knowledge. These attributes ensure 
that data can be stored and understood in an interoperable 
way. The typeOfContainer attribute defines which type of 
container is used to house this information, enabling the 
developer to attach application-specific metadata to 
different container types. The inferredContent attribute 
contains the inferred data, and the inferredContentInfo 
attribute defines how to interpret the inferredContent 
data. The inferredReferences attribute is an array of 
strings, one for each reference to an external knowledge 
source that is required to use this knowledge. The 
inferredResult attribute defines a set of standard result 
codes that can be used so that other applications that 
cannot understand the inferred data can substitute that 
data with an equivalent result. Finally, the appSource 
attribute is an array of strings, where each string defines a 
unique identifier that identifies the application that 
produced the inferred data. This is useful for tracing the 
results of the inference operation in case it does not agree 
with other data. 

 

Figure 6. Representing Inferred Knowledge 

Currently, our knowledge representation uses graphs 
and custom data structures to combine knowledge 
extracted from models and ontologies. This enables 
existing tools to be used to manage and represent 
knowledge. Specifically, we use Rational Rose v7.0.0.0 
for information modeling, and Protégé 3.4 beta for 
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ontology design. By transforming existing knowledge 
from model elements and ontologies into a common 
format (graphs), it becomes possible to use established 
linguistic relationships to associate knowledge from 
model elements with knowledge from ontologies (and 
vice-versa). This approach lends itself to reusing existing 
languages, as well as developing new languages. 

We chose DEN-ng as the model to integrate into 
FOCALE because other efforts, such as CIM [20], had a 
number of problems that make it hard to use with a 
model-driven approach, especially one that also uses 
ontologies. For example, CIM does not use patterns or 
classification theory, so it is very difficult to relate CIM 
objects to ontological concepts. CIM has its own 
metamodel which is not UML compliant. CIM has no 
context model and no metadata model, which are two of 
the strong points of the DEN-ng design. 

Our experiments are currently using different Cisco 
devices and software releases, which were modeled by 
extending the DEN-ng model to represent IOS commands 
as well as hardware, protocol, and other features. We 
have done limited testing with Juniper and Nortel devices 
as well to validate our mapping approach. 

 
 
6. Summary and Future Work 
 

We have described a novel approach to integrating and 
reusing information of various types for network 
management applications. This approach is applicable to 
other domains, and should be somewhat easier to 
implement, as most other domains do not have the 
inherent data heterogeneity and programming models that 
are present in network management. Future work will 
include reducing our current development environment to 
a single platform that uses a new symbology that is 
optimised for knowledge engineering, as well as 
developing new reasoning approaches that are 
computational simpler and hence amenable to near-real-
time operation. 
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