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Abstract
In a BGP prefix hijacking event, a router originates

a route to a prefix, but does not provide data delivery
to the actual prefix. Prefix hijacking events have been
widely reported and are a serious problem in the Internet.
This paper presents a new Prefix Hijack Alert System
(PHAS). PHAS is a real-time notification system that
alerts prefix owners when their BGP origin changes. By
providing reliable and timely notification of origin AS
changes, PHAS allows prefix owners to quickly and eas-
ily detect prefix hijacking events and take prompt action
to address the problem. We illustrate the effectiveness
of PHAS and evaluate its overhead using BGP logs col-
lected from RouteViews. PHAS is light-weight, easy to
implement, and readily deployable. In addition to pro-
tecting against false BGP origins, the PHAS concept can
be extended to detect prefix hijacking events that involve
announcing more specific prefixes or modifying the last
hop in the path.

1 Introduction

The Internet relies on the Border Gateway Protocol
(BGP)[16] to convey routing information. However,
if BGP provides incorrect routing information, packets
may never reach the intended destination, and may even
be misdirected to malicious destinations. The inability to
ensure the integrity and correctness of routing informa-
tion leads to many known vulnerabilities in BGP [12].
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This paper considers a simple and common vulnerabil-
ity called prefix hijacking. In a common prefix hijacking
event, an Autonomous System (AS) originates a route for
an address space, termed as prefix, but does not provide
data delivery for that prefix. In other words, an AS re-
ports “use me to reach prefix p”, but does not actually
provide data delivery for prefix p. For example, on De-
cember 24, 2004, AS 9121 incorrectly originated routes
to 106,089 prefixes, almost 70% of all the prefixes. BGP
routers throughout the Internet selected the route origi-
nating from AS 9121 as the best path to some or all of
these prefixes. Traffic for these prefixes was then for-
warded to AS 9121, who then essentially dropped the
packets, affecting thousands of organizations [13]. When
a prefix is hijacked, sensitive data from unsuspecting
users could easily fall into the wrong hands, resulting in
serious security and privacy breaches. A recent study
has also found that spammers hijack BGP prefixes to
send spam mail [14]. Thus, prefix hijacking is real op-
erational concern in the Internet, and securing Internet
routing against prefix hijacking is an important problem.

Simply detecting the occurrence of a prefix hijack
event is an essential, but difficult task. Large-scale events
where an AS mistakenly hijacks thousands of prefixes
may be detected relatively quickly due to their size and
impact. For example, in the AS 9121 event described
above, thousands of prefixes from different origins, sud-
denly changed to origin AS 9121, a clear indication of
prefix hijack. But smaller scale errors and intentional at-
tacks can be much more difficult to detect. For example,
suppose a malicious AS originates a false path to only
one prefix, 131.179.0.0/16 (UCLA). Some BGP routers
will accept the new false path while others may continue
to use the correct path originated by UCLA. An origin
change for a single prefix is a common occurrence and
is unlikely to trigger alarm. As we will show later in the
paper, there are quite a few origin AS changes during a
typical day and most of these changes are valid. A prefix
may change its origin AS at any time due to contrac-



tual arrangement, multi-homing, traffic engineering, and
a host of other factors. Only the origin itself (UCLA in
our example) could easily and accurately distinguish be-
tween a legitimate origin change and a prefix hijack [4].
The legitimate origin is best able to identify this type of
prefix hijack, but it has very little information about the
BGP routes taken by others to its own prefix. In this
case, UCLA may notice a drop in traffic and/or reports of
connectivity problems, but there are numerous potential
causes for this. Even if UCLA suspected a prefix hijack-
ing attack, UCLA’s local data can only confirm that it has
correctly announced its own route. To determine if others
are incorrectly announcing a route to UCLA, the UCLA
administrators would need data from other remote sites.

One of the goals behind the existing BGP monitor-
ing projects such as Oregon RouteViews and RIPE RRC
is to provide network operators with a remote view of
their own prefixes. Through establishing BGP peer-
ing with operational routers, the RouteViews and RIPE
RRC projects collect routing data from a few hundred
BGP routers around the globe placed in critical exchange
points, tier-1 ISPs, and so forth.1 These BGP data collec-
tors obtain information in real time, which can be used to
quickly detect prefix hijacking and identify the source of
the problem. For example, a prefix hijack event occurred
on January 22, 2006 and affected close to 80 prefixes in-
cluding a financial organization. Within a few seconds of
the event occurrence, RouteViews data collector received
update messages from several of its BGP peers indicating
a new origin to the prefix of the financial organization. If
the prefix owner had received this data, it could have im-
mediately detected the prefix hijacking and could have
quickly taken corrective measures using operator chan-
nels. However, prefix owners do not have any way to
easily access the data. The current BGP monitors collect
vast amounts of data and dump the raw data, unsorted,
onto the disk. It is impractical to assume that all the pre-
fix owners would be able to download this the data and
then extract the information about their own prefixes, let
alone doing so in real-time.

In this paper, we build on the premise that the pre-
fix owner is the only one who can accurately distinguish
between legitimate changes and prefix hijacking events,
and propose a scalable system for providing prefix own-
ers with timely and reliable notifications of potential pre-
fix hijacks. During a prefix hijack, the notification itself
may reach the hijacker instead of the prefix owner, and
thus the prefix owner would not be informed of the on-
going hijack. To increase the chances of notification de-

1Admittedly a few hundred routers represent only a small fraction
of the overall Internet. A prefix hijack that affects only a small local
region may not be observed by any of the current BGP monitors. In a
separate project, we are studying the optimal BGP monitor placement
problem, however those results are beyond the scope of this paper.

livery, we use a multi-path delivery mechanism using the
existing email infrastructure to increase the chances of
notification delivery. Our design is readily deployable
and easy to use. Once our system has detected the prob-
lem, the owner can then take necessary actions, includ-
ing soliciting help through operator channels like North
American Network Operators Group (NANOG) mailing
lists, and the NSP-Security mailing lists to either resolve
the problem with the hijacker or its upstream ISPs.

The remainder of the paper is organized as follows.
Section 2 presents some basics about routing and pre-
fix hijacks. Section 3 presents our system design in de-
tail. Notification generation, notification delivery, and lo-
cal notification filtering are presented in Section 4, Sec-
tion 5, and Section 6, respectively. Section 7 evaluates
our design. Section 8 shows how the detection capabil-
ity of our system can be extended to handle other forms
of prefix hijacking. Section 9 reviews related work and
Section 10 concludes the paper.

2 Background

The Internet consists of a large number of networks
called Autonomous Systems (AS), and BGP (Border
Gateway Protocol [15]) is the protocol used to exchange
routing information between these ASes. Each AS is rep-
resented by a unique numeric ID and destinations are in
the form of prefixes, where each prefix represents a net-
work space. For example, a prefix 131.179.96.0/24 rep-
resents a network space of 28 addresses belonging to AS
52 (UCLA). Authorities such as ARIN and RIPE assign
prefixes to organizations, who then become the owner of
the prefixes.

As a path vector routing protocol, BGP lists the en-
tire AS path to reach a destination prefix in its routing
updates. In Figure 1(a), AS 52 (UCLA) is the owner of
prefix 131.179.0.0/16 and announces this prefix to its up-
stream service providers. The AS announcing a prefix to
the rest of the Internet, is called the origin AS of the pre-
fix. In this example, AS 52 is the origin AS of prefix
131.179.0.0/16.2 An AS receiving a path to reach a pre-
fix may choose to propagate the path to some or all of
its neighbors. An AS intending to propagate a received
path, prepends its own AS ID to the path before sending
the announcement to its neighbors. Therefore, in Fig-
ure 1(a), AS A has an AS path of (A, P, Q, R, 52) for
prefix 131.179.0.0/16 and AS B has an AS path of (B,
R, 52). When multiple prefixes cover the same address,
the longest prefix match rule is used to forward the traf-
fic. Thus, if a BGP routing table contains paths to reach
prefix 131.179.0.0/24 as well as 131.179.0.0/16, then a

2Sometimes the owner of a prefix might not run BGP and its
provider AS serves as the prefix origin.



packet destined to 131.179.0.128 would choose the path
to reach 131.179.0.0/24.

2.1 Prefix Hijacking
In a prefix hijack event, the announced path to the pre-
fix cannot actually be used to deliver data to the pre-
fix. In some parts of the Internet, the false path replaces
the authentic route to the prefix and traffic that follows
the false path will eventually be dropped or delivered to
someone who is pretending to be the legitimate destina-
tion. In other words, the traffic sent along the false path
has been hijacked. We term the AS injecting false in-
formation as an attacker AS, and the AS that owns the
route as a victim AS. For example, in Figure 1b, AS 110
announces 131.179.0.0/16, while the true origin for this
prefix should be AS 52. It can be seen in this example,
that AS 110 successfully effected a hijack, since AS A
decided to pick the route to AS 110 instead of AS 52. In
this case, AS 52 is the victim, AS 110 is the attacker and
any traffic sent by AS A is delivered to AS 110 rather
than the legitimate origin. Note that AS 52 may see a
drop in its overall traffic volume, but variations in traffic
load are the norm for most networks and AS 52 may be
completely unaware that hijack event is occurring.

An attacker AS can hijack a prefix in various ways
such as falsely announcing itself as the origin for a pre-
fix (as discussed in the example above), falsely modify-
ing some portion of the path other than origin, or falsely
announcing a more specific prefix. Our presentation of
PHAS is particularly concerned with the first case case
where the origin AS is not valid. Section 8 discusses how
the PHAS concept can be extended to handle path modi-
fications adjacent to the origin AS and announcement of
more specific prefixes.

3 System Design

Our basic approach is to examine BGP routing data col-
lected at RouteViews (or RIPE, or any other BGP col-
lectors), and provide real time notifications of any po-
tential prefix hijacking to the prefix owner in a reliable
way. In particular, we should immediately notify the
prefix owner anytime a new origin AS is associated with
their prefix. At a potentially slower rate, the prefix owner
should be notified when an origin AS is no longer used
to announce its prefix. The net result is that the prefix
owner is able to track the set of AS numbers that origi-
nate its prefix. Presumably, the prefix owner also knows
which AS numbers are allowed to serve as origins and
can thus detect any false origins, as well as know when
the false origins have stopped announcing its prefix.

More formally, we define an origin set for each pre-
fix and track changes of this origin set. Existing BGP
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monitoring projects such as RouteViews and RIPE, peer
with a few hundred BGP routers around the globe and
collect BGP updates in real-time. Each monitored
BGP router, or monitor in short, reports its best path
to a prefix P and the last hop in this path is an ori-
gin AS for P. We define the origin set OSET (P, t)
for a prefix P as the union of all the origins seen
by all the monitors for that prefix at time t. For ex-
ample, on January 22, 2006 before 8:31 hours GMT,
all RouteViews monitors reported paths ending in AS
19758 for prefix 65.173.134.0/24, and thus for time
t < 8:31 on 01/22/2006, OSET (65.173.134.0/24, t) =
{19758}. When the prefix was hijacked at 8:31AM,
some monitors switched to paths ending with AS
27506 and thus for the time t = 8:31 on 1/22/2006,
OSET (65.173.134.0/24, t) = {19758, 27506}. Our
objective is to immediately notify the owner of
65.173.134.0/24 of this new origin set, and the owner
could then work to resolve this issue with the offend-
ing AS 27506 or its upstream providers. Later, when
the origin AS 27506 would not be seen as announcing
this prefix anymore, we would like to send a notifica-
tion to the prefix owner indicating that the origin set
OSET (65.173.134.0/24, t) = {19758}, so that the pre-
fix owner also knows that the problem has been resolved.

Our design consists of the following four components.
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1. User Registration: All prefix owners who are inter-
ested in using our system need to register with the
PHAS server and provide contact email addresses.
PHAS aims to provide a web-based registration ser-
vice, similar to the standard mailing list registration
process. Each new user opens an account by his/her
email address and a password via a secure HTTPS
session. This action is sent to the email address for
confirmation. Once confirmed, the registration is
committed, and any later change to the account is
done via HTTPS and requires the password. The
registration specifies which prefixes are of interest
and each registrant is strongly encouraged to submit
multiple email addresses hosted by different email
systems (such as a GMail address), to maximize the
chance of email reception in face of prefix hijack-
ing. Ideally, only the legitimate owner of a prefix
should register, but verifying the correct contact ad-
dress for each prefix is a challenging problem in its
own right with no immediately deployable solution.
In PHAS, an attacker may register and falsely claim
to be the prefix owner. However, this action does
not cancel the registration by the legitimate owner
and all notifications are based on publicly available
data so the attacker gains no new information by
successfully registering.

2. Origin Set Monitoring: Using the BGP monitor
data, PHAS maintains a current origin set for each
registered prefix. If there is a change to this ori-
gin set, an origin event is generated.To control the
number of origin events for prefixes with frequent
origin changes, we use a time-window based mech-
anism to reduce the repeated reporting of the ori-
gin changes but still guarantee the immediate noti-
fication for any new origin announced for a prefix.
We increase the duration of this window for pre-
fixes that report lot of origin changes even after the

default time window is used. The window duration
is decreased if the number of origin event reduces.
This adaptive window scheme is central to ensuring
the system scales from the perspective of the origin
set monitoring and also limits the number of false
positives sent to the prefix owners. It is discussed
further in Section 4.

3. Notification Transmission: Once an origin event is
generated, PHAS decides whether the origin event
translates to a notification message to be sent. For
this, it checks the user registration to see if there
are email addresses registered for the prefix in-
volved. However, the seemingly simple task of
sending a notification message, could be difficult in
face of prefix hijack. For example, when the route
to UCLA has been hijacked, email from PHAS to
noc@ucla.edu may follow the hijacked route and
never reach the intended receiver. To protect against
this case, we strongly recommended two practices
for prefix owners in order to set up “multiple diverse
paths” for email delivery. First, in registering with
our system, prefix owners should provide multiple
email accounts on different email servers that are
topologically diverse. Second, prefix owners should
have Internet access via multiple prefixes. ISPs of-
ten have multiple prefixes of their own. For one that
only owns a single prefix, a backup plan like a dial-
up Internet access account is recommended. With
the combination of multiple email addresses and
multiple prefixes for Internet access, prefix owners
can achieve a high success rate of notification de-
livery even in face of prefix hijack. All notification
messages are also signed by PHAS server, whose
public key is well-known. More details on the noti-
fication scheme will be discussed in Section 5.

4. Local Notification Filter: Although the notifications
could be sent directly to network administrators, our



design assumes an automated processing of the re-
ceived notifications. Tasks such as verifying the
message is properly signed, checking whether peri-
odic notifications has been received, and so forth are
better handled by an automated receiver. In addi-
tion, many prefixes have multiple legitimate origins
and thus not every change in the origin set is neces-
sarily an attack that should be reported to the local
network administrators. To make the system more
user friendly, we provide a local filter program for
processing the notification email. The local filter
manages the external email addresses, checks any
change in origin against a locally configured set of
valid origins, and only reports an alarm to admin-
istrator when an unexpected origin change occurs.
Local administrator can easily customize the filter
program or even provide their own filter program.
By incorporating a local filter, all the legitimate ori-
gin changes are simply screened out by the filter
and only notices requiring human intervention are
reported to the network operator. Local notification
filter is discussed in more detail in Section 6.

Figure 2 shows the four components in our design and
the interaction between them. Note how the origin events
translate to notifications and finally to alarms.

4 Origin Change Detection

PHAS detects changes in BGP prefix origins and sends
notification messages to registered prefix owners. For
traffic engineering purposes, some networks may change
their prefix origins frequently, which may trigger a large
volume of notification messages if we want to keep track
of every change. The main challenge in the system de-
sign is how to notify the owner in a timely manner while
not being overwhelmed by the volume of messages.

4.1 Instantaneous Origin Changes
We first consider a simple scheme (Algorithm 1) that
maintains an origin set for each prefix and sends a no-
tification whenever the origin set changes. It takes input
from a BGP monitoring project such as Route Views or
RIPE. Let {M1,M2, ...,Mi, ...,MN} denote the set of
N BGP routers providing data. By observing the BGP
updates sent by router Mi, we can determine Mi’s cur-
rent route to prefix P . If Mi has a route to P at time
t, origin(Mi, P, t) denotes the origin AS of P in this
route. If Mi has no route to P at time t, origin(Mi, P, t)
is empty. The origin set for prefix P at time t is defined
as OSET (P, t) = ∪N

i=1origin(Mi, P, t). In other words,
the instantaneous origin set is simply the union of the
origins currently used by any of the monitors to reach
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Figure 3: Origin events per prefix - December 2005

this prefix. As updates from Mi arrive, origin(Mi, P, t)
may change and thus the origin set may change as well.
Whenever the origin set changes, we say an origin event
is triggered.

Algorithm 1: Instantaneous Origin Change
Initialize origin(Mi, P, t0) using the initial routing
table of Mi at time t0;
OSET (P, t0) = ∪N

i=1origin(Mi, P, t0);
if update for prefix P at time t from router Mi is an
announcement then

origin(Mi, P, t) = the last AS in the announced
path;

else
origin(Mi, P, t) = {};

OSET (P, t) = ∪N
i=1origin(Mi, P, t);

if OSET (P, t) 6= OSET (P, t− 1) then
origin gain = OSET (P, t)−OSET (P, t− 1);
origin loss = OSET (P, t− 1)−OSET (P, t);
send [OSET (P, t), origin gain, origin loss]

to prefix owner;

To study the algorithm behavior, we used data for the
month of December 2005, from the RouteViews collec-
tor at the Oregon Internet Exchange. This BGP data col-
lector peers with 42 operational routers from around the
globe and thus the origin set is the union of the origin
ASes seen by these 42 peers. The number of prefixes
involved is close to 170,000. Algorithm 1 generated
511,513 origin events involving 48,768 prefixes during
December 2005. Thus, close to 30% of the prefixes had
one or more origin set changes. Figure 3 shows the distri-
bution of the number of origin events per prefix (prefixes
with no origin events are not plotted).

As the figure shows, some prefixes generated a large
number of origin events. In Algorithm 1, even when
the same origin leaves the set and comes back again
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on a repeated basis, each appearance and each disap-
pearance triggers an origin event. For example, prefix
207.135.82.64/26 generated 5747 origin events during
December 2005, simply due to the fact that its origin
set switched frequently between {2828, 65000}, {2828},
and {65000}. Since some prefixes have unstable connec-
tivity to the Internet, repeated withdrawal and announce-
ment sequence causes the origin to frequently leave and
join the set, resulting in repeated origin events. In order
to detect prefix hijacking events, it is essential to immedi-
ately notify the owner when a new origin appears. How-
ever, reporting oscillations between already reported ori-
gins, as in this particular example, can be reduced.

4.2 Windowed Origin Changes
We now introduce the notion of windowed origin set. We
can mask off repeated and frequent origin changes by re-
porting observed origin set over some time window, in-
stead of reporting instantaneous origin set changes. Fig-
ure 4 plots the inter-arrival time between origin events.
From the figure we can see that the inter-arrival time is
less than 1000 seconds in close to 75% of the cases.

Let OSET (P, t, k) denote the set of all the origins
for prefix P observed over the last k time units. In
other words, this windowed origin set consists of all
the origins for P that were observed by at least one
router Mi during the time [t − k, t]. More formally, de-
fine origin(Mi, P, t, k) = ∪t

i=t−korigin(Mi, P, t) and
OSET (P, k, t) = ∪N

i=1origin(Mi, P, t, k). The defini-
tion includes the last k units at each time and thus pro-
vides a continuously moving window over which the ori-
gins of P are recorded. The algorithm to detect origin
changes with a moving window is the same as Algo-
rithm 1, except that we now have to include the time win-
dow k and only send origin events when OSET (P, t −
1, k) 6= OSET (P, t, k).

It is important to note that this revised algorithm only
reduces the number of repeated origin events. The prefix
owner will be immediately notified whenever a new (po-
tentially false) origin appears for the first time during the
last k time units. Suppose router Mi is the first to observe
a new origin O for prefix P . If this new announcement
first appears at time t, Origin(Mi, P, t, k) = O and thus
O ∈ OSET (P, t, k). Since Mi is the first to observe this
origin, it must also be the case that O /∈ OSET (P, t −
1, k). Thus OSET (P, t − 1, k) 6= OSET (P, t, k) and an
origin event is triggered at time t, i.e., as soon as the new
origin appears. This feature guarantees timely detection
and notification of potential prefix hijacking.

However, the addition of a time window does delay the
notification of origin-loss events. Suppose origin O was
in fact a prefix hijacking attempt. As discussed above,
the prefix owner is immediately notified when O first ap-
pears. Assume as a result of this fast notification, the
owner took actions and quickly resolved the attack. Let
Mj denote the last monitored router to remove O from its
routing table at time tend. Although O has been removed
from the routing tables, it will not be removed from Mj’s
origin set until time tend+k. Thus O is also not removed
from Origin(Mi, P, t, k) until time tend +k. The net re-
sult is that the prefix owner is not notified that O has been
removed until k time units after O has vanished from the
routing system.

4.3 Adaptive Window Size

Our objective is to reduce the number of repeated origin
events for prefixes with frequent origin changes, but not
penalize well-behaved prefixes by delaying reports that
an origin has been removed. We start with a base time
window of one hour. This masks transient changes for
most prefixes, at a cost of delaying notification of ori-
gin loss events by one hour. However, some prefixes still
generate a large number of notification messages even
with the one hour window. Increasing the window size
can further limit the number of repeated origin events for
these prefixes but at the cost of further delaying origin-
loss events for other prefixes. Rather than attempt to as-
sign a uniform time window for all prefixes all the time,
we introduce an adaptive window resizing scheme for
each prefix. Essentially, prefixes that generate a large
number of messages will be penalized by large window
size, while other prefixes still use small window size.

Initially, each prefix starts with a penalty value of
penalty(P ) = 0 and a time window of one hour.
Anytime a notification is generated for this prefix,
penalty(P ) is increased by 0.5. The penalty value de-
cays exponentially over time and the rate of decay is de-
termined by a half-life parameter. We currently use a
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half-life of 2 hours3. The size of the prefix’s time window
is set to 2bpenalty(P )c hours. In other words, a prefix with
penalty(P ) < 1 uses a time window of 20 = 1 hour; a
prefix with a penalty(P ) in the range [1, 2) uses a time
window of 21 = 2 hours; a prefix with penalty(P ) in
range [2, 3) uses a time window of 22 = 4 hours; and so
forth.

Figure 5 shows the distribution of origin events gen-
erated using this adaptive window. For comparison, we
also show the distribution using a fixed window size of
1 hour and show a zoomed in portion of the plot for the
top 10 most active prefixes. Figure 6 shows the number
of origin events generated per day using adaptive win-
dows with a default as 1 hour along with the number
of origin events using instantaneous origin changes for
comparison. The introduction of the adaptive window
reduces the number of origin events due to unstable pre-
fixes, while still ensuring that any newly announced ori-
gin is immediately reported to the prefix owner. Prefixes
that experience large number of origin changes would
experience a longer delay before being notified of origin
loss events, but would still receive immediate notification
when a new origin appears.

5 Notification Delivery

Once a notification message is generated, it is delivered
to the prefix owner’s registered mailboxes through email.
We choose email for delivery, since it is a ubiquitous de-
livery method on the Internet and uses TCP, which pro-
vides reliable data transfer. The email body is signed
by the monitor to ensure its integrity. There are two
types of messages: event-driven notifications and peri-
odic refreshes. The event-driven notifications are trig-

3In other words, the penalty at time t is exactly one half of the
penalty at time (t − 2) hours, assuming no additional origin events
were generated during that time
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gered by origin set changes, and the email contains cor-
responding origin gains or losses. For example prefix
60.253.48.0/24, the notification messages look like the
following:

<TYPE=gain, seqnum=1, GMT-TIME=20041221
12:52:33, PREFIX=60.253.48.0/24, NEW-SET={23918
31050 29257}, ORIGIN-GAINED=29257>

<TYPE=loss, seqnum=2, GMT-TIME=20041221
13:52:49, PREFIX=60.253.48.0/24, NEW-SET={29257
31050}, ORIGIN-LOST=23918>

The periodic notification is sent at fixed time interval
(1 day by default), and the email contains the complete
origin set at that moment. The periodic refresh message
is a soft-state mechanism to provide additional system
resilience against unforeseen errors. For instance, even
if a notification is lost due to email server crash, the next
refresh message will bring the owner’s knowledge about
the origin set up to date.

The major challenge in our system design is how to
deliver notifications successfully even in the face of pre-
fix hijacks. When a prefix is being hijacked, some data
traffic on the Internet would go to the false origin instead
of the true one. If the path from our server to the pre-
fix owner is diverted to the false origin, then the owner
would not receive the notification at the time when it is
needed the most.

Due to the large scale of Internet routing, a prefix hi-
jack is unlikely to affect all the paths towards the true
origin. Thus in delivering the notification messages, our
system uses multiple diversified paths to improve the
chances of successful delivery. Ideally, we can send noti-
fications from the monitors that still have path to the old
origin. But this type of email forwarding service is not
part of current BGP monitoring arrangement with com-
mercial ISPs. Requiring email forwarding from moni-
tors would undermine the deployability of our service.
Thus we leave this as an option for future development,
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and instead ask prefix owners to take the responsibility
of setting up multiple diversified delivery paths.

There are two practices recommended for prefix own-
ers. First, when registering with our system, they should
provide multiple email accounts on different servers
that are also topologically diverse, for instance popular
email services like GMail and Yahoo! mail. Secondly,
they should have Internet access through multiple pre-
fixes. ISPs often have several prefixes themselves, so this
should not be a problem. For ones that only own a single
prefix, a backup plan, such as a dial-up Internet access
account, is recommended.

Figure 7 shows how the multiple diversified path de-
livery works. The owner of prefix P registers four email
addresses, one within P, and three others, X, Y, and Z, in
three different networks. Every notification message will
be sent to all four mailboxes. The prefix owner’s local
filter will retrieve these four messages, and then process
them. The email body will contain a sequence number,
based on which the local filter decides whether it is a
duplicate or is obsolete. Only emails with new contents
pass through the filter and result in an alarm used for
hijack detection. When a prefix P is hijacked, as long
as the owner can access one of X, Y, Z, and our server,
the notification will be delivered. Even if all four mail-
boxes are not accessible directly from the owner site, as
long as the owner can access the Internet through another
prefix, he/she can still retrieve the notification messages
regarding the prefix P. The local filter also periodically
polls the mailboxes. In the event that none of them is
reachable, it is very likely that prefix owner’s Internet
access has problems, and the filter will generate an alarm
to the operator. In summary, the combination of multiple
topologically diversified mailboxes and multiple prefixes
used for Internet access, ensures high delivery rate for
notifications.

6 Local Notification Filter

PHAS does not associate a prefix with a true origin or
false origin, and thus reports all origin set changes to the
prefix owner. However, not all origin set changes may be
of interest to the prefix owner, especially in the event that
the origin set changes frequently. The local notification
filter, is an important tuning block at the user side that
enables the prefix owner to filter out unwanted alarms
and alert the user for potential hijacks. In this section,
we explain some basic building blocks for constructing
filter rules and use examples to show how simple rules
can control the notifications delivered to the user.

6.1 Constructing filtering rules
We define a rule to have the form “IF <condition>
THEN <action>”. There are two basic actions possi-
ble; ACCEPT results in the message being delivered and
REJECT results in the message being dropped. The de-
fault action is ACCEPT, in case no rules are specified or
no rules are fired. The local filter can contain various
rules ordered by preference, and IF clauses can also be
nested. While, multiple rules can be listed, for each noti-
fication message, an action of ACCEPT or REJECT can
be performed only once. In other words, once an action
is performed, no more rules are matched for that notifi-
cation message. Hence, we encourage users to use rules
that are simple and easy to understand and analyze.

To construct rules, we define the following constructs.

1. CONTAINS: defines what a particular key may con-
tain.

2. DIFF: difference between sets.

3. LT, EQ, GT: correspond to the mathematical <,=
and >.

4. NOT: negates the construct it follows. E.g. one may
use it with CONTAINS.

5. AND, OR: for combinations of conditions.

6. ANY and ALL: used to deal with sets in rules.

Examples

1. A rule specific to a prefix, and checking to see if the
new origin is a known origin:

IF <ORIGIN-GAINED EQ 29257 AND PREFIX
EQ 60.253.48.0/24> THEN REJECT

2. A rule asking to drop all origin loss notifications:

IF <TYPE EQ ”loss”> THEN REJECT



Example of a bad Rule

1. A rule that checks for the existence of an AS in the
ORIGIN-SET:

IF <ORIGIN-SET CONTAINS 23918> THEN
REJECT

In the event of a hijack that changes the origin set from
{23918} to {23918, X}, where X is the hijacker, the no-
tification will not be delivered to the user, since the origin
set still contains AS 23918.

6.2 Case Study

We now use a case study to show how simple rules can
be used to deal with a real scenario. We choose prefix
60.253.48.0/24 as an example and look at the notifica-
tions from December 21, 2004 to December 28, 2004,
when a known prefix hijack event happened. A sample
of the notifications seen by the filter is shown below.

<TYPE=gain, GMT-TIME=20041221 04:44:45,
PREFIX=60.253.48.0/24, NEW-SET={23918, 31050},
ORIGIN-GAINED=31050>

<TYPE=gain, GMT-TIME=20041221 12:52:33,
PREFIX=60.253.48.0/24, NEW-SET={23918, 31050,
29257}, ORIGIN-GAINED=29257>

<TYPE=loss, GMT-TIME=20041221 13:52:49,
PREFIX=60.253.48.0/24, NEW-SET={29257, 31050},
ORIGIN-LOST=23918>

<TYPE=loss, GMT-TIME=20041221 13:53:56,
PREFIX=60.253.48.0/24, NEW-SET= {29257},
ORIGIN-LOST=31050>

For this prefix, we observed three origin ASes: AS
29257, AS 31050 and AS 23918. The origin set fluctu-
ated between various combinations of these three ASes
causing notifications to be sent to the owner. Without lo-
cal filtering, all these legitimate changes would have re-
sulted in alarms being sent to the prefix owner. However,
the prefix owner, knowing all these three legitimate ori-
gin ASes, can set simple rules to filter out these changes:

IF <ORIGIN-GAINED EQ ANY
{23918,31050,29257} > THEN REJECT

IF <ORIGIN-LOST EQ ANY {23918,31050,29257}
> THEN REJECT

Note, each notification contains only one value for
ORIGIN-GAINED or ORIGIN-LOST, and hence we can
use EQ (equals) clause here. With this rule in place, the
prefix owner would only receive an alarm when the ori-
gin changes passes both rules. Around 9:30 AM on Dec
24, 2004, such an alarm happened:

<TYPE=gain, GMT-TIME=20041224 09:30:29,
PREFIX=60.253.48.0/24, NEW-SET={23918 9121},
ORIGIN-GAINED=9121>
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Figure 8: Origin events per day from June 1, 2005 to
August 31, 2005

<TYPE=loss, GMT-TIME=20041224 11:35:02,
PREFIX=60.253.48.0/24, NEW-SET= {23918},
ORIGIN-LOST=9121>

The first alarm indicates that AS 9121 is now hijacking
the prefix 60.253.48.0/24. The owner knows that this is
not a legitimate origin for this prefix, and can then take
appropriate actions. An alarm is also generated to inform
the owner that AS 9121 stopped announcing the prefix,
indicating the matter has been resolved.

7 Evaluation

To evaluate the overhead of the system, we use BGP log
data to calculate the number of origin events generated
by the PHAS server, and the number of notifications re-
ceived by each AS. We also apply our method to the data
collected during known hijack events to show that PHAS
can indeed catch those events. Finally, we use simula-
tions to evaluate the success ratio of notification delivery
using multi-path delivery scheme.

7.1 Notification Messages
Figures 8 and 9 plot the number of origin events per
day over a 6 month period from June 2005 to Novem-
ber 2005. The origin events generated per day for month
of December 2005 were shown in Figure 6 in Sec-
tion 4. Throughout this period, we observed the number
of events captured per day to be around 2000, with a few
occasional spikes. From a system point of view, sending
2000 messages per day is manageable, even with multi-
ple email delivery.

We now look from users’ point of view to see how
many notification messages they would receive if sub-
scribed to receive PHAS alerts. We treat each origin
event as one notification, assuming all prefixes are reg-
istered to receive alerts. For our evaluation, we use the
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Figure 9: Origin events per day from September 1, 2005
to November 30, 2005

events generated for the month of December 2005. We
first evaluate the notifications received per prefix. From
Figure 5 in Section 4, we see that only 20K out of more
than 150K prefixes were involved in origin events. Of
those 20K prefixes, almost all of them had less than 10
origin events per month. Only a handful of prefixes had
more than 100 origin events per month. The worst case
being 209.140.24.0/24 with 196 origin events. A closer
look at the alarms revealed that the origin set alternated
between {} and {3043}, which indicates the prefix was
unstable. From, these numbers for origin events, one can
see that the number of notifications expected per prefix is
quite small, except for some unstable prefixes. For cases
of unstable prefixes, the owner’s local filter will be able
to handle such redundant notifications easily.

Since a prefix owner may register multiple prefixes,
we also look at number of notifications expected per AS
for the month of December 2005. For evaluation pur-
pose, we estimated the prefixes registered by each AS
by using the routing table to map every prefix to its ori-
gin AS. Figure 10 shows the number of origin events
per AS for December 2005. Only about 3.5K ASes out
of the total 18K ASes received notifications. Of those
ASes that received notifications, 97% of them received
less than 100 notifications in the entire month. The worst
case was AS 29257, receiving 2501 notifications, with
the OSET (P ) fluctuating between combinations of 4 ori-
gins. These numbers for origin events per AS indicate
that in most cases, an AS would receive a small num-
ber of notifications, and in extreme cases, local filters
can once again deal with the common pattern of notifi-
cations. All of the above results show that the load of
notification generation, transmission, and processing are
easily manageable by a single machine, even when all
the prefixes are registered with PHAS.
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2005

7.2 Detecting Known Events
We now check if our system would have caught some
known prefix hijack events. One such prefix hijack oc-
curred on May 7, 2005 when AS 174 hijacked one of
Google’s prefixes, 64.233.161.0/24, causing Google to
be unreachable during this time. When run over this pe-
riod of time, PHAS caught this origin set change and in-
dicated AS 174 as the origin gained during this event.

A larger scale hijack event occurred on Dec 24, 2005.
AS 9121 announced itself as origin to over 106K pre-
fixes. PHAS detected 106082 unique prefixes with origin
9121 added to its origin set and a total of 217884 origin
events. Most prefixes had 2 notifications, one reporting
the addition of AS 9121, and the other reporting the re-
moval of AS 9121.

Another case of hijack occurred on Jan 22, 2006, when
AS 27506 announced itself as origin to some other’s
prefixes. For this day we detected 41 unique prefixes
with AS 27506 as a new origin, and a total of 141 ori-
gin change events. For some prefixes, the AS 27506
was announced as origin, then withdrawn, and then re-
announced and withdrawn again resulting in multiple
origin events.

Overall, PHAS successfully caught every known pre-
fix hijack due to false origin in a timely manner, and the
timing matched reports from other sources.

7.3 Notification Delivery
To have multiple diverse paths for notification delivery,
we recommend the prefix owners register multiple mail-
boxes and have multiple prefixes for Internet access. If
they do have multiple prefixes, they can always receive
the notification messages assuming only one is hijacked.
In this subsection, we evaluate the effectiveness of us-
ing multiple mailboxes through simulations on Internet
topology.



The approach is to take an Internet AS graph as the
topology, tag each link with inferred relationship, assume
the widely adopted “no-valley” routing policy on every
node, then compute the shortest policy-compliant path
between any two nodes. For each calculation, the input
includes one true prefix origin, one false origin, and a set
of mailboxes. Based on the computed shortest paths, we
can find out the success ratio of notification delivery.

The AS Topology is collected from multiple sources,
including BGP monitors, route servers, looking glasses,
and routing registry [22]. The AS relationship is in-
ferred using the method in [21]. Two set of mailboxes
are used for comparison. The first set is RouteViews
(AS 3582) only, which is called “direct delivery” with-
out other mailbox. The second set is RouteViews plus
GMail (AS 15169), Yahoo Mail (AS 10310), and Hot-
mail (AS 12076). We randomly picked 276 ASes to form
the origin pairs. They are 15 tier-1 ASes, 21 tier-2 ASes,
20 tier-3 ASes, 20 tier-4 ASes, and 200 tier-5 ASes. We
exhaust all the combinations of origin pairs, a total of
75900 cases.

Given an origin pair, some nodes will take the path to
the true origin, while the others will take the path to the
false origin. If a mailbox node takes the path to the true
origin, the prefix owner will be able to access this mail-
box and receive the notification. Otherwise the notifica-
tion is lost. Delivery ratio is defined as the percentage of
mailboxes that take the path to the true origin.

Note the simulation results will be symmetric. That
is, suppose there is 20% delivery ratio for a given pair of
true origin and a false origin, then it will be 80% when
the role of these two origins switches. Since we exhaust
all combinations of origin pairs, whenever there is a case
of a% delivery ratio, there will be a corresponding case
of (1− a%) delivery ratio.

In our path computation, we use random tie-breaking
when there’re multiple shortest paths. For example, if a
mailbox has two equal paths, one leads to the true origin,
the other leads to the false origin, we count this as 0.5
notifications from this mailbox can be delivered.

Figure 11 compares the delivery ratio of with and
without additional mailboxes. Without the three addi-
tional mailboxes, about 30% of notifications will be guar-
anteed delivered, about 30% of notifications will be lost
for sure, and the rest may be delivered by certain prob-
ability. With the three additional mailboxes, the non-
delivery ratio drops to about 10%.

Figure 12 shows the number (not the ratio) of notifica-
tions that can get delivered. In about two thirds (x ≥ 1)
of the cases, we have at least one messages are guaran-
teed to be delivered. It doubles compared with using only
the direct delivery (30%). This suggests that three addi-
tional mailboxes can greatly improve the notification de-
livery, but we may still need more mailboxes for higher
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success ratio.

8 Extensions to basic system

So far we have focused on detecting false origins. In this
section, we discuss other ways of hijacking a prefix be-
sides directly announcing a prefix and discuss extensions
to the current system to deal with some of these cases.

8.1 Classification of Prefix hijack

At the highest level, the attacker AS could target a prefix
that is already being announced by another AS, which
we term as valid prefix. The attacker may pretend to be
the owner of this prefix and originate the prefix resulting
in a false origin hijack, that is the focus of this paper.
Another way to hijack a prefix is by announcing a valid
origin, but report invalid path to the origin. For false
paths, we separate the case of false last hop, from false
information on any other hop in the path, since the prefix
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owner’s AS knows its immediate neighbors, and hence
can identify whether the last hop is valid or not.

An attacker AS may also announce a prefix that is not
being announced by another AS, termed as invalid pre-
fix. If the attacker announces a sub-prefix of some valid
prefix, termed as a covered prefix hijack, then routers
in the Internet may contain routes to both the victim
AS’s prefix as well as the attacker’s prefix. However,
if the destination IP of a packet being routed, falls un-
der the attacker’s prefix space, then due to longest pre-
fix match, the data would be forwarded to the attacker.
An attacker AS may also announce a less specific pre-
fix than a valid prefix, termed as a covering prefix hijack
but will receive traffic, only when the route to the valid
prefix is withdrawn. For example, if AS 110 announces
131.0.0.0/8, then AS A would route traffic destined to
the valid prefix 131.179.0.0/16, to AS 110 only when the
prefix 131.179.0.0/16 is withdrawn. Finally, an AS may
announce an invalid prefix that does not conflict with any
used prefix space. For example, spammers are known to
use unused prefixes for spam purpose. Figure 13 shows
the classification explained above.

Prefix hijacks could also include combinations of var-
ious types in Figure 13. E.g. AS 110 announcing
131.179.0.0/24 (invalid covered prefix) with the path
{110, 52} (invalid last hop). In Figure 13, the hijacks
in bold (false origin, covered prefix, false last hop) are
the ones where the prefix owner knows of what is legit-
imate and what may not be, and protection against these
attacks is the focus of PHAS. We now discuss two other
sets to deal with covered prefix hijack and false last hop
hijack.

8.2 Sub-prefix Set

The idea of using a sub-prefix set is to provide the owner
of an IP prefix with the information about whether any-
body is announcing a more specific prefix under its as-
signed space. This would catch hijacking event where a
prefix, say 131.179.96.0/26 is announced by a hijacker

AS 100, but the prefix is part of the address space cov-
ered by 131.179.0.0/24, which is owned by AS 52.

For an IP prefix x, some or all of its assigned
address space might get further divided into a num-
ber of longer prefixes. Each of these prefixes is a
known as a covered prefix of x . The set of all
covered prefixes of x observed from the BGP moni-
tors, is denoted as CP (x). For example, if UCLA
announces 131.179.0.0/16 as well as 131.179.96.0/24
and 131.179.59.0/24, then CP (131.179.0.0/16) is
{131.179.96.0/24, 131.179.59.0/24}.

We define a sub-prefix set SPSET (x) to consist of all
y ∈ CP(x) such that there does not exist another prefix
z ∈ CP(x) with y ∈ CP (z). In other words, the set
SPSET (x) contains only the first level covered prefix for
prefix x.

As an example of how this SPSET could be use-
ful, we present a case from Jan 22, 2006. The pre-
fix 208.0.0.0/11, owned by Sprint, generated one ori-
gin event at 5:06 am UTC indicating that the sub-prefix
set had changed from {} to {208.28.1.0/24} with origin
{27506}. The prefix in question, 208.28.1.0/24 is not
usually seen in the global routing tables, but in this case
AS 27506 announced this prefix, which covers a portion
of Sprint’s 208.0.0.0/11 prefix space, thus resulting in a
hijack.

8.3 Last Hop Set

The last hop set is maintained with the objective of de-
tecting false last hops in BGP announcements. Once
again, the owner of the prefix would know the legitimate
next hops based on peering agreements and reports of
such changes would allow the owner to detect false last
hops in BGP paths.

We define an last hop set LHSET (A) as the set of last
hops for all prefixes with AS A as the origin. For exam-
ple, if M1 observed a path (7018, 1239, 52) to prefix P1,
M2 has a path (3356, 1239, 52) to P2, and M3’s path to
P3 is (701, 852,52), then the last hop set of AS 52, or
LHSET (52), is {1239, 852}. Note, that last hop is de-
fined for an AS, and not for a prefix, since it is reflecting
topological connectivity.

The main objective of using the sub-prefix set and the
last hop set is to identify potential hijacks involving more
specific address space and last hop changes. However,
the sub-prefix set for large address blocks like 12.0.0.0/8
can be potentially huge, and may cause lots of dynam-
ics. Similarly, the size of last hop sets for nodes with
rich connectivity (e.g. tier 1 ISP) can also be significant,
and may fluctuate a lot. For future work, we plan to un-
derstand the dynamics of these two sets, define how to
use these sets, and include them as a part of the PHAS
system.



9 Related Work

Various prefix hijack events have been reported to
NANOG [10] mailing list from time to time. [23] and
[8] studied the exact prefix hijack as part of the MOAS
(Multiple Origin AS) problem, in which one prefix has
multiple origin ASes in the routing table. These stud-
ies show that one prefix can be legitimately announced
by multiple origin ASes, but can also be hijacked due to
mis-configurations.

Existing proposals to address prefix hijack problem
can be categorized into two types: cryptography based,
and non-crypto based. Crypto-based solutions, such as
[18], [1],[3], [11], [6], [17], require BGP routers to sign
and verify the origin AS and the path, which have signif-
icant impact on router performance. Furthermore, these
solutions are not easily deployable because they all need
changes to router software, and some require public key
infrastructures.

Non-crypto proposals include [2], [20], [24], and [5].
IRV approach in [2] lets each AS designate a server that
answers queries regarding BGP security. [20] lets the
router give preference to stable routes over transient ones
which can be results of prefix hijacks. Similarly, in PG-
BGP [5], a router detects prefix hijacks by monitoring the
origin ASes in BGP announcements for each prefix over
time. A transient origin AS of a prefix is considered as
anomalous, and router avoids using the anomalous routes
whenever possible. PG-BGP also detects covered prefix
hijacks using similar approach. In [24], prefix owners
attach additional information to the routing updates, so
that remote routers could detect prefix hijacks. All the
Above non-crypto proposals require changes to router
softwares, router configurations, or the ways that oper-
ators run their networks.

Compared to all of the above proposals, the biggest
advantage of our system is that it is fully deployable.
PHAS can be up and running without requiring coopera-
tion from multiple ISPs, registry authorities, router ven-
dors, or even end users. While other approaches focus on
detecting prefix hijack at remote ASes, we simply notify
the prefix owner about the origin changes, thus allowing
the prefix owners to detect prefix hijacks with a high ac-
curacy.

Three other related works [19, 7, 9] are also fully de-
ployable. [19] utilizes the data from RouteViews or RIPE
and visualizes the origin AS changes of the prefixes for
visual detection of the prefix hijacks. [7] proposes an
alarming algorithm for prefix hijacks and path hijack,
based on the the public BGP data, and the geographic in-
formation of the each AS from the whois database. The
key observation is that if two edge ASes are connected
to each other or legitimately originate the same prefixes,
they are geographically close. Violation of this observa-

tion will trigger alarms.
The RIPE MyASN project [9] is probably the most

similar service to ours, but its design is based on a fun-
damentally different philosophy. In the MyASN project,
a prefix owner registers the valid origin set for a prefix.
MyASN then tracks roughly the equivalent of our instan-
taneous origin set for this prefix. An alarm is triggered
when any invalid origin AS appears. Our approach re-
ports the origin set changes to the prefix owner, and any
filtering or checking is done at the user site. This is a
subtle difference, but has important implications.

First, filtering at the user side provides the greatest de-
gree of flexibility to the detection algorithm. Users can
apply any filtering criteria or detection algorithm on the
data. When the filtering is done at the service site like
MyASN, it is limited to what the service interface could
provide. Obviously for security reason, the service site
cannot allow arbitrary filtering script to be uploaded. If
prefix owners cannot achieve their filtering goal at the
service site, they have to deploy local filter anyway.

Second, it is critical for the server-based filtering to
have the most up-to-date information needed for prefix
hijack detection. The valid origin set must be updated at
MyASN server whenever the prefix has a different ori-
gin set. It’s especially hard to do update in face of an
on-going prefix hijack. When a new hijack happens, the
prefix owner may want to change the filtering rule, but is
unable to do so due to the attack. Our approach does not
does not suffer from this problem.

10 Conclusion

In this paper we described the design of PHAS, a Pre-
fix Hijack Alert System. Rather than attempting an ac-
curate route hijacking detection algorithm, PHAS aims
at providing timely notification of origin AS changes to
the owners of individual prefixes in a reliable way. The
prefix owners can then easily identify real hijack alerts
and filter out normal origin changes. By avoiding run-
ning complex data processing at BGP data collectors,
PHAS can be quickly implemented and run with little
overhead at the data collectors. By automating the email
processing at the user end, PHAS provides network oper-
ators with realtime alerts to potential prefix hijacks while
adding virtually no overhead to the operation tasks.

PHAS leverages on the existing routing logs for data
input and the universally available email system for no-
tification delivery. PHAS is light on authentication of
users because its information is derived from publicly
available data, and is light on data filtering because it
simply provides information to users for hijack detec-
tion. As a result PHAS is light weight and readily de-
ployable. As next step we plan to implement and install
PHAS at RouteViews for trial deployment. We expect



to gain further insight on how to improve PHAS through
experience.
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