Short-Lived Prefix Hijacking on the Internet

Peter Boothe¹ James Hiebert¹ Randy Bush²

1{peter, jamesmh}@cs.uoregon.edu Computer Science/Computing Center University of Oregon

> ²randy@psg.com IIJ

NANOG 36 February 14, 2006

Problem Characterization

Characterizing Hijacking Characterizing Short Lived Hijacking

Methodology

Initializing the Search Space Narrowing the Search Space

Results

Highly suspicious events How many hijackings in total?

Conclusion

Future Work
Recap + some questions
Acknowledgments
Questions

What Is Prefix Hijacking?

- Announcing space that belongs to someone else without their permission
- Lots of reasons for doing so, almost all of them bad
- Different time-scales of hijackings may be used for different purposes.
- Short lived hijackings are good for getting IP space for spamming, launching attacks, or sharing illegal material anonymously.
- ► We are searching for short-lived hijackings

Short-lived announcements inside a long-lived netblock

- Majority of the AS/prefix pairs are long lasting
- ▶ When an AS legitimately controls a netblock, any short lived announcement (by a different AS) inside that block is presumed to be either a misconfig or an invasion
- Announcements at the very beginning of a sample period are also presumed to be legit

The Routeviews Input Data

- Searched all UPDATE messages in Routeviews data
- Recorded all announced prefixes and the announcing AS

TIME: 07/18/07 02:22:29

TYPE: BGP4MP/MESSAGE/Update FROM: 211.142.32.148 AS12950

TO: 128.223.67.2 AS6337

ORIGIN: IGP

ASPATH: 11956 2114 3657 NEXT_HOP: 211.142.32.148

COMMUNITY: 2914:410 12956:27270 12956:27271

ANNOUNCE

60.8.238.0/24 200.21.232.0/24

A Tree of the IP Address Space

- All announced netblocks are inserted into a tree
- A list of ASNs which announced the block are recorded at the proper node
- ▶ The tree is searched for overlap

Percent Uptime

- ► Eliminated all ASN/Prefix pairs with a percent_uptime above a given threshold (thresh = 90%)
- percent_uptime defined as:

$$\frac{\sum [t_{\textit{withdrawal}_0} - t_{\textit{announcement}_0}...t_{\textit{withdrawal}_n} - t_{\textit{announcement}_n}]}{t_{\textit{endOfMonth}} - t_{\textit{announcement}_0}}$$

▶ The graphed uptime below would be around 10%

Eliminate Mutually Exclusive Uptimes

- ▶ IP space is not always used at same time
- Sometimes prefixes are transferred from one AS to another
- ► The primary path goes down and their backup strategy involves statically routing through another AS
- Prefixes with mutually exclusive uptimes are eliminated as a possible invasion

Eliminate Customer/Provider Relationships

- Final step which is not yet automated
- Manually run a series of tests
 - ► **AS_OWNS_BLOCK**: Is the entity who owns the AS in whois the same as the entity that owns the netblock in whois?
 - ► SAME_AS: the two ASs in question may be the entity using multiple ASNs; a variety of whois fields can be checked
 - ▶ **IMPORT_EXPORT**: some ASs explicitly say in the radb whose paths they import and export; if the invader and the invadee have some relationship, the announcement is more likely legitimate

Final Eliminations

- ► INVADEE_ASSIST: we look at the announcement data and if the invadee passed along the invaded prefix, then it's likely OK
- ► FAT_FINGERING: if the the prefix in question lexicographically similar to something else that AS owns, then do not count the announcement as an invasion

Suspect case: a short lived /24 being used within an unrelated AS

AS	Netblock	Uptime Profile in December 2005
2914	199.224.0.0/20	
		was invaded by
12124	199.224.14.0/24	
		12/04/05 12/09/05 12/14/05 12/19/05 12/24/05 12/29/05

- The X-axis is time
- ▶ When the line is high, the AS/netblock pair is in the RIB
- ► When the line is low, the AS/netblock pair has been withdrawn (or the month is over)

Three /24s involved in a probable hijacking

- ▶ 26228 is **not** the same entity as 6461
- ▶ 26228 is **not** the owner of 209.249.4[567].0/24
- ▶ 6461 does **not** have a relationship with 26228 in radb
- ▶ 6461 was **not** seen propagating 209.249.4[567].0/24
- ► The hijacked prefixes are **not** lexicographically similar to 26228's other legitimate prefixes

Fooled by a lag in whois data

AS	Netblock	Uptime Profile in June 2005
701	63.80.0.0/12	
		was invaded by
17284	63.82.77.0/24	Π
		6/1/5 6/5/5 6/19/5 6/15/5 6/29/5 6/25/5 6/39/5

- ► At the time of announcement 63.82.77.0/24 was not registered as having been sub-allocated
- ▶ 17284 announced nothing else in June
- Now whois data indicates that 17284 and the owner of 63.82.77.0/24 are the same entity
- ▶ Detection methods based on whois data will inevitably generate false positives until whois data catches up

Number of hijackings in December 2005

- ► Population of 845 ASs which simultaneously announced a prefix inside another AS's, and had a low percent uptime
- ► Randomly sampled 5% (42 AS-AS invasions)
- Investigated using the previously described manual tests
- 3 were not easily explained as misconfigurations
- ▶ Given our entire population, we calculate a 95% confidence interval of our sample. Result: between 26 and 95 successful prefix hijackings occurred in December 2005

For us or others to do...

- ▶ Refine search criteria; there's still too much intuition involved
- Automate the remaining manual steps
- Decrease reliance on whois or make whois more accurate
- Figure out a way to deal with AS post-pending being (potentially) used to disguise attacks
- What about long term hijackings?

So, to sum up...

- ▶ We can identify between 26 and 95 hijacking instances in Route-Views data for December 2005
- Many more misconfigs and false alarms than purposeful hijackings - 750+
- Detection (up to the last step) is automated, but further automation remains dependent on good whois data (hard!)
- We can make code available in any number of ways
- ▶ We are willing to make our results, and any future automated results, available to meet the community's needs, via...
 - Biweekly email? sample email at http://soy.dyndns.org/~peter/ms/presentation/email_sample
 - Webpage with top 10 lists? sample page at http://soy.dyndns.org/~peter/ms/presentation/html_sample.html
 - · ...?

Acknowledgments

- NSF Award #0221435 "Beyond BGP: Flexible and Scalable Interdomain Routing (BBGP)"
- University of Oregon Route Views Project

Questions? Comments?