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Dynamically forecasting network performance using the Network
Weather Service ∗

Rich Wolski

Computer Science and Engineering Department, University of California, San Diego, La Jolla, CA 92093-0114, USA

The Network Weather Service is a generalizable and extensible facility designed to provide dynamic resource performance forecasts
in metacomputing environments. In this paper, we outline its design and detail the predictive performance of the forecasts it generates.
While the forecasting methods are general, we focus on their ability to predict the TCP/IP end-to-end throughput and latency that is
attainable by an application using systems located at different sites. Such network forecasts are needed both to support scheduling
(Berman et al., 1996) and, by the metacomputing software infrastructure, to develop quality-of-service guarantees (DeFanti et al., to
appear; Grimshaw et al., 1994).

1. Introduction

As network technology advances, the resulting improve-
ments in interprocess communication speeds make it pos-
sible to use interconnected but separate computer systems
as a high-performance computational platform or metacom-
puter. Effective application scheduling (particularly of dis-
tributed parallel applications) is fundamental if such meta-
computers are to be used successfully. Since the resources
composing a metacomputer are shared, contention causes
their load and availability to vary over time. As a result,
the performance that each resource can deliver to an appli-
cation also varies with time.

In this paper, we describe a distributed service that dy-
namically forecasts the performance various networked re-
sources can deliver to an application. The service operates
a distributed set of sensors from which it gathers readings of
the instantaneous conditions. It then uses numerical mod-
els to generate forecasts of what the conditions will be for
a given time frame. We think of this functionality as be-
ing analogous to weather forecasting, and as such, term the
service the Network Weather Service (NWS).

We have developed the NWS for use by schedulers
in a networked computational environment. The AppLeS
scheduling methodology [1,3] makes extensive use of its
facilities and we are currently implementing versions for
Legion [17,25] and Globus/Nexus [9,15]. Initial schedul-
ing results using the NWS are promising [4]. In this paper,
we focus on the problem of network performance forecast-
ing within the context of scheduling, and the predictive
methodologies that we have chosen to explore initially. We
have developed a prototype of the NWS that forecasts net-
work performance (latency and bandwidth) and available
CPU percentage for each machine that it monitors.
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The forecasting methods we have implemented fall into
three categories:

• mean-based methods that use some estimate of the sam-
ple mean as a forecast,

• median-based methods that use a median estimator, and

• autoregressive methods.

To gauge the effectiveness of each method, we report both
the mean square prediction error, and the mean percent-
age prediction error generated by each method as accuracy
measures. While mean-based predictive methods generally
yield lower mean square error measures, and median-based
methods are better in terms of mean percentage error, the
best forecasting technique for each setting is difficult to
predict. The system, therefore, tracks the accuracy (using
prediction error as an accuracy measure) of all predictors,
and uses the one exhibiting the lowest cumulative error
measure at any given moment to generate a forecast. In
this way, the NWS automatically identifies the best fore-
casting technique for any given resource.

In the next section (section 2), we briefly describe the
structure and implementation of this prototype. Section 3
describes the sensory mechanisms and section 4 describes
the forecasting methods we have currently implemented.
In section 5 we compare NWS measurements with their
corresponding forecasts for several different network envi-
ronments. We conclude in section 6 with an evaluation of
the results, and a description of our future research.

2. Structure and implementation

To serve as a viable tool for scheduling, the Network
Weather Service must

• sense resource performance throughout the system,

• forecast the future performance of each resource, and

• disseminate the forecast information to all interested
client schedulers.
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Figure 1. The structure of the Network Weather Service.

Unlike the real-world weather service, however, the oper-
ation of the NWS can significantly change the conditions
which it is attempting to forecast. Moreover, we do not
assume that computational or network resources within the
system will be devoted exclusively to the NWS as such
resources would constitute possible failure points and per-
formance bottlenecks. Our view, instead, is that the NWS
must limit its intrusiveness so that its resource consumption
does not adversely impact the performance of the applica-
tions it is designed to serve. The need to limit the intru-
siveness of the NWS influences both the implementation of
the overall system and the forecasting techniques we have
chosen. Since the problems of non-intrusive resource mon-
itoring [8,21,28] and load forecasting [2,7,18,23,26] both
pose open research questions, we have separated the sen-
sory and forecasting functions of the NWS. The resulting
modular design is intended to provide a general facility
in which a variety of different monitoring and forecasting
techniques can be employed easily. Figure 1 depicts the
architecture of the system.

Sensory data is compiled into a logically central (al-
though physically distributed) database to serve as inputs
to a collection of forecasting models. Each sensor period-
ically takes a performance measurement from the resource
it is monitoring and stores it with a time stamp in the data-
base. The resulting collection of measurements (ordered
by time stamp) form a time series describing the behavior
of the resource from which they were taken. That is, each
resource is characterized by its own time series. Based
on this information history and any a priori knowledge
of a resource’s expected performance response, the NWS
forecasting subsystem generates a prediction of what the
performance will be for each resource during a given time
frame. Once generated, the current forecast data, along with

Figure 2. NWS servers running on three monitored hosts.

quality measures describing its accuracy (i.e., mean square
prediction error, mean percentage prediction error, etc.) are
published according to the specifications of an independent
reporting interface. Each of the sensory, forecasting, and
reporting functions is implemented as a separate subsystem
providing a generalizable facility that is easily extended and
modified.

3. Sensing

NWS sensors report the observed performance that a re-
source is able to deliver at the time a measurement is taken.
A network link sensor, for example, reports periodic mea-
surements of latency and bandwidth across a particular link.
Measurements are taken as close to the application level as
possible, since the goal is to forecast the performance an ap-
plication can actually obtain from each resource. The units
of measurement that each sensor uses depend, in general,
on the demands of the forecasting models1.

Each machine to be monitored must execute a copy of
the NWS server. Figure 2 depicts three monitored hosts, A,
B and C within the monitored region (shown shaded in the
figure). These hosts each run a copy of the NWS server,
each of which is capable of establishing and maintaining a
connection (TCP/IP in the current implementation) between
itself and the others. An administrative client utility that
controls the system may execute on any machine inside or

1 We have based an initial sensory subsystem implementation on the
TCP/IP socket functionality provided by the netperf network perfor-
mance utility, although we have modified the code substantially. Netperf
proved to be a robust and powerful substrate for our purposes, and we
encourage those interested to visit the netperf World Wide Web site for
further information, see [29].
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outside the monitored network, requiring connectivity to at
least one of the NWS servers.

Currently, each server maintains a network performance
sensor and a CPU availability sensor. All servers in the sys-
tem share a common list of hosts being monitored, and the
TCP port number to which each server is attached. Period-
ically, each server chooses a host from the list and conducts
a communication “experiment” with that host. During an
experiment, the round-trip time of a single-word packet is
measured. The resulting value is divided by two to yield an
approximation of the latency or start-up overhead associ-
ated with a communication. Immediately after the latency
has been estimated, the initiating server sends a predeter-
mined (and parameterizable) quantity of data and times the
transfer. Throughput is then calculated as the data size di-
vided by the transfer time.

throughput = data size/data transfer time. (1)

The resulting measure includes the overhead necessary to
initiate a TCP/IP communication stream, which can be sig-
nificant. To calculate the effective throughput rate, the
latency is subtracted from the time recorded for the data
transfer, and the result is used as the actual time to transfer
the data.

effective throughput

= data size/(data transfer time − latency). (2)

After an experiment is complete, the latency, throughput,
and effective throughput are recorded in an internal data-
base.

Each server also periodically records the local CPU
availability using the Unix utilities vmstat or uptime. If vm-
stat is available, the sensor parses its output to determine
the percentage of time the system is idle, the time spent
(by the machine) executing in system space, the percentage
of time spent executing user processes, and the number of
running processes. Using these measures, it estimates the
percentage of time the system is willing to devote to a sin-
gle application. If vmstat is not available, then the CPU
monitor uses uptime in the manner described by the local
Unix utility reference manual.

3.1. Periodicity

The periodicity with which the NWS sensors take mea-
surements is synchronized by an external administrative
client process. Notice that if communication experiments
are conducted strictly under the control each server’s local
clock, two or more servers might choose to test the same
link simultaneously. Moreover, the NWS servers work with
a logical, application-level picture of the network’s topol-
ogy – they do not consider which links might share a com-
mon medium requiring exclusive access (such as ethernet),
and which ones might be able to handle simultaneous com-
munication without interference. The servers, therefore,
pass around a token which contains the right to conduct a

single experiment. When holding the token, each server is
free to choose the experiment that it wishes to conduct. The
token assures that at most one server may be conducting
a communication experiment at any given time. A central
utility operated by the NWS administrator controls the rate
at which the token may be passed from server to server.
By controlling that rate, the administrator can control the
overall periodicity of the communication measurements.

We note that this method of controlling intrusiveness
does not scale well. Since one token is active within the
system at a time, and the token must be handled by each
system, the number of systems being monitored imposes
a maximum frequency with which measurements can be
taken. For small collections of machines it is adequate,
but for larger-scale systems such as the Distributed Object
Computational Testbed (DOCT) [11] or the I-way [10,24]
we will need another mechanism.

3.2. Storage requirements

Storage intrusiveness is also an issue. Some of the fore-
casting methods discussed in section 4 require a history of
measurements. In order to bound the storage requirements
of the system, we limit the number of measurements each
server is allowed to maintain to a fixed, but parameterized
quantity. Further, each server is responsible for maintain-
ing a history of the measurements it takes. History data can
be collected from the servers by a utility (i.e., for human
display purposes) but the data remains distributed until it
is demanded.

4. Forecasting

The NWS operates a set of forecasting methods that it
can invoke dynamically, passing as parameters the perfor-
mance measurements it has taken from each resource. In
this section we describe the methods we have included in
the current implementation. After each new measurement
is taken, it is passed to all of the methods, and a new fore-
cast is generated. That is, for each forecasting method f at
measurement time t,

predictionf (t)

= METHODf
(
value(t), historyf (t)

)
, (3)

where

value(t) = the measured value at time t,

predictionf (t) = the predicted value made by method f
for measurement value(t+ 1),

historyf (t) = a finite history of measurements, fore-
casts, and residuals generated previously
to time t using method f ,

METHODf = inforecasting method f .

The values supplied by the sensory subsystem are treated as
a time series by the forecasting methods, and each method
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maintains a history of previous activity and accuracy infor-
mation. In particular,

errf (t) = value(t)− predictionf (t− 1) (4)

is the error residual associated with a measurement and a
prediction of that measurement generated by method f .

The current implementation generates a forecast every
time a measurement is taken. Since each method is eval-
uated whenever a new datum is available, we restrict our-
selves to those methods we can implement with limited
computational complexity. However, an alternative imple-
mentation we are considering generates forecasts only when
they are requested by a client; this approach may make
more computationally complex methods feasible.

4.1. Mean-based methods

One class of predictors that we have investigated uses
arithmetic averaging (as an estimate of the mean value)
over some portion of the measurement history to predict
the value of the next measurement. The running average,
defined as

RUN AVG(t) =
1

t+ 1

t∑
i=0

value(i), (5)

uses the average of the measurement taken at time t with all
previous measurements as a predictor of the measurement
to be taken at t+ 1.

Since the running average considers the entire history
of measurements when making each forecast, the weight
given to each measurement decreases linearly with time. If
the most recent values better predict the next measurement,
then an average taken over a fixed-length history (thereby
fixing the weight given to each measurement) will be a bet-
ter predictor. The fixed-length or “sliding window” average
is calculated as

SW AVG(t,K) =
1

K + 1

t∑
i=t−K

value(i), (6)

where K > 0 is an integer specifying the number of sam-
ples to consider in the window. Note that for K = 0,
SW AVG uses the last measurement only as a predictor.
That is,

LAST(t) = SW AVG(t, 0). (7)

Recent work by Harchol-Balter and Downey [20] indicates
that this is a useful predictor for CPU resources, hence we
include it as a separate method.

The choice of K for SW AVG may be difficult to deter-
mine a priori for each resource, and in fact, may vary over
time. To set K dynamically so that it adapts to the time
series, we employ a gradient-descent strategy. Let K(t) be
the value of K at time t, and

erri(t) =
(
value(t)− SW AVG

(
t,K(t) + i

))2
.

Then we define

ADAPT AVG(t) =



SW AVG(t,K(t)− 1)
if min

i=−1,0,1
erri(t) = err−1(t),

SW AVG(t,K(t))
if min

i=−1,0,1
erri(t) = err0(t),

SW AVG(t,K(t) + 1)
if min

i=−1,0,1
erri(t) = err1(t)

(8)
and

K(t+ 1) =


K(t)− 1 if min

i=−1,0,1
erri(t) = err−1(t),

K(t) if min
i=−1,0,1

erri(t) = err0(t),

K(t) + 1 if min
i=−1,0,1

erri(t) = err1(t).

(9)
The value of K is adjusted at each time step in the direc-
tion that yields the lowest error. We use a measure of the
square error in erri(t) arbitrarily. It is also possible to use
a measure of the absolute percentage error, but our initial
experiments indicate that the results are similar. Note that
the value of K(t) must be carried as part of the history
for ADAPT AVG, and that K(0) is set to some reasonable
starting value. We also arbitrarily restrict K to be between
a predetermined maximum and minimum. Setting a maxi-
mum threshold limits the computational complexity of the
predictor; the minimum value prevents it from becoming
“stuck” in a local minimum. In the experiments presented
in the next section, we set 5 6 K 6 50.

Stochastic gradient or recursive prediction error estima-
tors are powerful predictive techniques with recursive for-
mulations [27]. For example, modern implementations of
the TCP/IP protocol include a dynamic predictor of end-to-
end round-trip time based on stochastic gradient filter [30].
We follow the exposition of the technique provided in [22]
which includes a description of a very efficient implemen-
tation for the Unix kernel. We define

GRAD(t, g) = (1− g) ·GRAD(t− 1, g) + g · value(t) (10)

for a gain (0 < g < 1). The choice of g controls the ac-
curacy with which GRAD estimates the mean value of the
time series and the lag time until it converges to a stable
estimate. GRAD oscillates randomly about the true aver-
age with a standard deviation σGRAD = g · σvalue(t). Hence
a larger value of g will yield a more widely varying esti-
mate. However, GRAD converges exponentially with time
constant 1/g to the true mean. If the time series is not sta-
tionary, GRAD must reconverge as the mean moves. The
convergence rate must be faster than the drift in the mean or
the predictor will fail to converge. Empirically, a value of
0.05 works well, although we expect to study the problem
of finding an appropriate g further. We have experimented
with techniques to dynamically adapt g on the fly, but have
yet to identify an effective method for the resources we
currently monitor with the NWS.
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4.2. Median-based methods

The median value can also serve as a useful pre-
dictor, particularly if the measurement sequence contains
randomly-occurring, asymmetric outliers. Our presentation
of these techniques follows the exposition in [12,19]. The
median over a sliding window of fixed length whose lead-
ing edge is the most recent measurement is used as the
forecast for the next measurement. That is, we define

SortK = the sorted sequence of the K most recent mea-
surement values,

SortK(j) = the jth value in the sorted sequence,

MEDIAN(t,K) =


SortK((K + 1)/2)

if K is odd,

(SortK(K/2) + SortK(K/2 + 1))/2
if K is even.

(11)
As with SW AVG the choice of K may be difficult to

determine. We, therefore, include an adaptive median filter
that is analogous to ADAPT AVG:

ADAPT MED(t) =



MEDIAN(t,K(t)− 1)
if min

i=−1,0,1
erri(t) = err−1(t),

MEDIAN(t,K(t))
if min

i=−1,0,1
erri(t) = err0(t),

MEDIAN(t,K(t) + 1)
if min

i=−1,0,1
erri(t) = err1(t),

(12)
where K(t) is the value at time t and

erri(t) =
(
value(t)−MEDIAN

(
t,K(t) + i

))2
.

K(t+ 1) is then determined by equation (9).
Median filters are attractive because they will reject the

effects of sharply outlying data points or “impulses” from
the forecasts they produce. They lack some of the smooth-
ing power of the averaging based methods, however, result-
ing in forecasts with a considerable amount of jitter [19].
It is possible to combine the positive advantages of both
classes of methods in the form of an α-trimmed mean filter
that averages the central K − 2 ∗ α ∗ K values within a
sliding window of size K for (0 < α < 0.5). We define

T = bα ·Kc

for window size K, and the trimmed mean to be

TRIM MEAN(t,K,T )

=
K−T+1∑
j=T+1

1
K − 2 · T SortK(j). (13)

It is possible to consider gradient adaptation of α in
the same manner that we adapt K for ADAPT AVG and
ADAPT MED but the relationship between α and K is not
obvious.

4.3. Autoregressive models

Recent work [2,18] has shown that aggregate internet
packet traffic can be effectively modeled by autoregressive,
integrated, moving average (ARIMA) models. Fitting these
models to a specific time series requires the solution to
a system of potentially non-linear simultaneous equations,
making them difficult to use in a dynamic setting. However,
fitting a purely autoregressive (AR) model requires only the
solution to a strictly linear system of equations that can be
solved recursively via the Levinson Recursion [19]. The
general form of a pth order autoregressive model is

AR(t, p) =

p∑
i=0

ai · value(t− i). (14)

If the time series is stationary, then the sequence {ai} that
minimizes the overall error can be determined by the solu-
tion to the linear system

N∑
i=0

ai · ri,j = 0, j = 1, 2, . . . ,N , (15)

where ri,j is the autocorrelation function for the series of
N measurements taken. The Levinson Recursion requires a
set of partial correlation (PARCOR) coefficients which can
also be derived recursively. Burg [5] and more recently
Haddad and Parsons [19] describe a recursive algorithm
for calculating both the PARCOR and autoregression coef-
ficients from which we derive our current implementation.
We omit the details of the algorithm here due to space con-
straints, but our implementation follows [19] closely. The
algorithm takes time O(p ·N ) for N measurements, which
becomes prohibitive when N is the length of the entire
time series. We, therefore, calculate the {ai} coefficient
sequence over a sliding window of the K most recent mea-
surements, rather than the entire series of size N . That
is, after each measurement is taken, we recompute the au-
toregressive coefficients {ai} using only the previous K
measurements as an approximation of the complete time
series.

The choice of parameters p and K are determined by the
computational complexity the NWS is willing to tolerate.
Making K as large as possible (as close to the size of the
history as possible) will yield the best fit, but making K
too large causes the execution cost of each forecast to be
prohibitive. The value of p should be set according to the
decay of the autocorrelation function ri,j , the values for
which are not computed explicitly by the method2. Since
the autocorrelations can be computationally expensive to
compute, we choose arbitrary fixed values of p = 15 and

2 The autoregressive model is applicable if the decay in the autocorrelation
function is exponential and the value of p is set to the duration of the
decay [16]. Our current implementation of the NWS does not attempt
to determine the suitability of AR for a particular resource. Instead,
it assumes that the autoregressive model is applicable, and tracks the
prediction error, using AR only if the error is lower than other competing
predictors (see section 4.4).
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K = 60. In future implementations, we plan to derive p
algorithmically based on estimates of the autocorrelation
values, and K based on p and a maximum computational
complexity threshold.

4.4. Dynamic predictor selection

Choosing the correct predictive method for each resource
that the NWS monitors is difficult. Further, it may be that
a particular resource conforms to the assumptions of one
method for a period of time, and then changes its behavior
so that it is best modeled by a different method. Rather than
attempting to choose the correct method a priori, our ini-
tial implementation maintains all of the predictive methods
simultaneously, for each resource. Then it uses the error
measure calculated in equation (4) to produce an overall
fitness metric for each method. The method exhibiting the
best overall predictive performance at any time t is used to
generate the forecast of the measurement at time t+ 1. In
the initial implementation of the NWS, we use the mean
square prediction error

MSEf (t) =
1

t+ 1

t∑
i=0

(
errf (i)

)2
(16)

and the mean percentage prediction error

MPEf (t) =
1

t+ 1

t∑
i=0

∣∣errf (i)
∣∣/value(i) (17)

as fitness metrics for each method f at time t. We then
define

MIN MSE(t) = predictorf (t)

if MSEf (t) is the minimum over all methods

at time t, (18)

and

MIN MPE(t) = predictorf (t)

if MPEf (t) is the minimum over all methods

at time t. (19)

That is, at time t, the method yielding the lowest mean
square prediction error is used as a forecast of the next mea-
surement by MIN MSE. Similarly, the forecasting method
at time t yielding the lowest overall mean percentage pre-
diction error becomes the MIN MPE forecast of the next
measurement. In a scheduling context, it is unclear which
fitness metric – mean square error or mean percentage error
– will ultimately yield a better schedule. Indeed, the fitness
of each forecasting technique may be application-specific.
Therefore, the current system maintains and reports both
mean square error and mean percentage error, allowing a
specific scheduler to choose either.

Table 1 summarizes the predictive methods we have im-
plemented and the fixed values we have chosen for any
parameters required by each method.

Table 1
Summary of forecasting methods.

Predictor Description Parameters

RUN AVG running average
SW AVG sliding window average K = 20
LAST last measurement
ADAPT AVG adaptive window average max = 50, min = 5
MEDIAN median filter K = 20
ADAPT MED adaptive window median max = 50, min = 5
TRIM MEAN α-trimmed mean α = 0.1
GRAD stochastic gradient g = 0.05
AR autoregression K = 60, p = 15
MIN MSE adaptive minimum mse
MIN MPE adaptive minimum mpe

Table 2
Host locations, types, and operating systems.

Location Host type Operating
system

UCSD Parallel Comp. Lab* Sparc10 SunOS 4.1.3
UCSD Parallel Comp. Lab Sparc5 SunOS 4.1.3
San Diego Supercomputer Center Alpha DEC OSF/1 V3.0
California Institute of Technology Hypersparc SunOS 5.4
University of Oregon Power challenge SGI Irix 6.1
National Center for Power challenge SGI Irix 6.2
Supercomputer App.

5. Forecasting network performance

In this section, we present measurements and corre-
sponding forecasts of latency and throughput for network
connections between machines. During the experimental
period, the NWS also monitored and predicted CPU avail-
ability using the same forecasting methods. Not surpris-
ingly, network performance proved to be the more difficult
of the two to predict as the CPU measurements were slowly
varying by comparison. We, therefore, use the network per-
formance data to illustrate the forecasting functionality of
the NWS.

We monitored the TCP/IP connectivity between the hosts
shown in table 2 using the prototype NWS over a 24 hour
period, and dynamically forecast the latency and through-
put between each pair of hosts. We chose this collection of
systems so that we could study the quality of the existing in-
ternet connectivity with respect to geographic proximity. In
particular, we were interested in identifying representative
examples of connectivity for different plausible metacom-
puting settings. To do so, we report data on the connectivity
between the Sparc10 located in the Parallel Computation
Lab (PCL) at UCSD (marked with an “*” in table 2) and
the other five systems.

Each of these parings is intended to serve as a represen-
tative example. The two PCL machines are connected to
the same Ethernet segment representing a intra-lab connec-
tion. The PCL and the San Diego Supercomputer Center
(SDSC) are located approximately one-quarter mile apart
on the UCSD campus representing the connectivity in a
campus-wide setting. Caltech is located in Pasadena Cal-



R. Wolski / Dynamically forecasting network performance 125

ifornia, approximately 120 miles north of San Diego rep-
resenting intra-state connectivity. The connection between
UCSD and the University of Oregon, located in Eugene,
Oregon, represents inter-state connectivity, and the con-
nection to the National Center for Supercomputing Appli-
cations (NCSA) in Urbana, Illinois, represents transconti-
nental connectivity.

Due to space constraints, we only show data for the
Sparc10 sending to each of the other systems. In gen-
eral, the connectivity between two systems is not symmet-
ric with respect to sending and receiving performance. We
believe that this asymmetry results from differences in the
operating system implementations on the various machines,
rather than any inherent network characteristics, and we
are working to verify this conjecture. Also we are inter-
ested in studying the network performance available to a
non-privileged user process executing on each machine, so
we use the standard Internet interface in each experiment.
There are special networking facilities that exist between
some of the sites in the study (i.e., the vBNS [31]) but
processes must have equally special access rights to use
them.

All of the data were collected between 6:00 PM on
Wednesday, September 18, 1996, and 6:00 PM the fol-
lowing day. The NWS was initiated at the beginning of
the experimental period so that the forecasters would have
access to no previous information (i.e., all start-up and cali-
bration effects would be visible). Measurements were taken
at roughly 30 second intervals, and a latency measurement
immediately preceded each throughput measurement. The
throughput was measured using a 64 K byte data transfer
with 4 K socket buffers at both the sending and receiv-
ing ends. We report all throughput measurements in units
of megabits per second (mbits/s), and latency in millisec-
onds (ms).

5.1. PCL throughput

In table 3 we summarize the overall accuracy of each
forecasting method when forecasting throughput in the PCL
over the 24 hour measurement period. The stochastic gra-
dient (GRAD) predictor generates the lowest mean square
prediction error, and the trimmed mean (TRIM MEAN) is

Table 3
Forecasting method error statsitics for PCL throughput measurements.

Predictor MSE MPE

RUN AVG 0.5274 0.0927
SW AVG 0.5041 0.0902
LAST 0.7892 0.1066
ADAPT AVG 0.5214 0.0925
MEDIAN 0.5386 0.0901
ADAPT MED 0.5337 0.0896
TRIM MEAN 0.5130 0.0893
GRAD 0.4903 0.0895
AR 0.7139 0.0992
MIN MSE 0.5136 0.0901
MIN MPE 0.5417 0.0906

(a)

(b)

(c)

Figure 3. (a) PCL throughput time series, (b) GRAD predictions, and
(c) MIN MSE predictions.

best in terms of lowest mean percentage prediction error
(shown boldface in the table). MIN MSE shows the abil-
ity of the NWS to determine the best predictive method
(in terms of mean square error) dynamically without know-
ing a priori that GRAD would perform best. Similarly,
MIN MPE shows the NWS’s tracking of mean percentage
error. Both of these methods yield error rates that are rel-
atively close to the respective minima, although for this
series, all of the forecasting methods except LAST and AR
perform reasonably well.

In figure 3(a) we show the time series of throughput
measurements for the intra-PCL connection. The PCL Eth-
ernet segment we monitored is isolated from general Inter-
net traffic by a gateway. Even though it is used only by
PCL machines, it still displays considerable performance
variation. Predictions made by GRAD are shown in fig-
ure 3(b) and by MIN MSE in figure 3(c). Except during
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Figure 4. Predictor selection for MIN MSE.

the initial part of the experiment, the prediction curves are
identical. That is, even though we did not know ahead of
time that GRAD would be most accurate, the MIN MSE
predictive method automatically identifies it as having the
minimum mean square prediction error. The reason that
they do not have identical mean square error statistics is
that MIN MSE requires some time to recognize GRAD as
the best predictor.

Figure 4 shows predictor selection as a function of time
for MIN MSE. The heavy horizontal lines indicate which
predictor MIN MSE used at any given point in time. The
dotted vertical lines show when the predictor switched from
one method to another. Notice that after an initial start-
up period (lasting from 6:00 PM until approximately 1:00
AM), MIN MSE uses the values generated by GRAD for the
remainder of the experiment. Since the NWS is intended to
be a continuously available service, such a lengthy calibra-
tion or start-up period does not pose a serious problem. The
results are similar for MIN MPE; during start-up it switches
several times before identifying TRIM MEAN as the most
accurate predictor in terms of mean percentage error.

5.2. PCL latency

The accuracy of the forecasting methods when predict-
ing latency in the PCL is shown in table 4. For the PCL
latency measurements, the median-based forecasters gen-
erate predictions having the lowest mean percentage error,
and very nearly the lowest mean square error. RUN AVG
is slightly better than MEDIAN in terms of mean square
error, but generates a little over twice the mean percentage

Table 4
Forecasting method error statsitics for PCL latency measurements.

Predictor MSE MPE

RUN AVG 0.7149 0.1984
SW AVG 0.7439 0.2103
LAST 1.427 0.2544
ADAPT AVG 0.7351 0.1523
MEDIAN 0.7469 0.0963
ADAPT MED 0.7453 0.1012
TRIM MEAN 0.7317 0.1172
GRAD 0.7261 0.2067
AR 0.9327 0.2991
MIN MSE 0.7197 0.1961
MIN MPE 0.7477 0.0968

(a)

(b)

Figure 5. (a) Latency time series for PCL, (b) RUN AVG (dotted) versus
MEDIAN (solid).

error (19.8% versus 9.6%, respectively). Figure 5(a) shows
the time series of latency measurements and in figure 5(b)
we compare the predictions generated by RUN AVG (dotted
line) to those generated by MEDIAN (solid line).

In contrast with the throughput time series (figure 3a),
the latency measurements show intermittent outliers de-
parting from an almost uniform value of about 1 ms (fig-
ure 5(a)). These outliers do not generally form a trackable
trend (their duration is short) and they differ from the sta-
ble value by an order of magnitude. As such, a median-
based forecasting method will reject them in favor of the
uniform tendency. Since the outliers all constitute longer
latencies (there are no measurements shorter than 1 ms), a
mean-based method will be drawn in the direction of the
outliers. Figure 5(b) depicts this relationship. The solid
line shows the forecasts generated by MEDIAN and the
dotted line above it in the figure are the forecasts made by
RUN AVG. Note that we have changed the scale of the
graph to make the difference easier to discern. Since the
RUN AVG forecasts are closer to the outliers when they
occur, RUN AVG yields a lower square error measure and,
consequently, a lower overall mean square error. However,
RUN AVG consistently differs from the uniform 1 ms value,
so its cumulative mean percentage error is higher. Since
the error terms are not squared when calculating mean per-
centage error, MEDIAN does not accumulate as much error
when it encounters an outlier.

Note that LAST exhibits poor forecasting performance
for this time series because the presence of an outlier does
not indicate that another outlier will follow. Note also that
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MIN MSE and MIN MPE correctly identify and track the
best predictor according mean square error and mean per-
centage error, respectively.

5.3. SDSC throughput

Table 5 shows the accuracy for the throughput fore-
casts between the UCSD PCL and SDSC. Again, as is true
for the PCL throughput measurements, GRAD yields the
lowest mean square error measure. The best mean per-
centage error, however, comes from ADAPT MED. We
show the throughput time series, the predictions made by
ADAPT MED, and a trace of the window size over time
in figures 6(a), 6(b) and 6(c), respectively. ADAPT MED
starts with an initial window size of 20, but the window
eventually settles be between 5 (a preset minimum value)
and 10.

(a)

(b)

(c)

Figure 6. (a) PCL-to-SDSC throughput time series, (b) ADAPT MED
predictions, and (c) ADAPT MED window size.

Table 5
Forecasting method error statsitics for PCL-to-SDSC throughput measure-

ments.

Predictor MSE MPE

RUN AVG 0.2578 0.2673
SW AVG 0.1943 0.2162
LAST 0.2872 0.2188
ADAPT AVG 0.2201 0.2410
MEDIAN 0.2080 0.2221
ADAPT MED 0.1974 0.2042
TRIM MEAN 0.1968 0.2168
GRAD 0.1886 0.2172
AR 0.2269 0.2101
MIN MSE 0.1919 0.2177
MIN MPE 0.2017 0.2069

Table 6
Forecasting method error statsitics for PCL-to-SDSC latency measure-

ments.

Predictor MSE MPE

RUN AVG 80.20 0.2215
SW AVG 82.86 0.2307
LAST 154.72 0.2622
ADAPT AVG 80.16 0.1539
MEDIAN 79.96 0.1114
ADAPT MED 80.26 0.1125
TRIM MEAN 79.28 0.1246
GRAD 81.05 0.2209
AR 88.67 0.2768
MIN MSE 79.41 0.1278
MIN MPE 80.23 0.1121

5.4. SDSC latency

Median-based methods (similar to the results for the
PCL) perform best as forecasters of latency between the
PCL ad SDSC. Table 6 shows the accuracy of the predic-
tors. The median-based methodologies display lower mean
square and mean percentage error measures, unlike in the
PCL where RUN AVG yields the lowest mean square error.
Specifically, TRIM MEAN achieves a slightly smaller mean
square error than all of the other methods (except LAST and
AR which are significantly less accurate). In terms of mean
percentage error, MEDIAN performs, again, only slightly
better than TRIM MEAN and ADAPT MED. These three
median-based predictors are, in general, twice as accurate
the mean-based ones with regard to mean percentage er-
ror.

Similar to the PCL latency measurements, the latency
time series (figure 7) is characterized by unpredictable out-
lying deviations from a relatively fixed uniform tendency.
The deviations are generally one order of magnitude greater
than the typical value of around 3 ms, with a few spikes
(those that extend beyond 30 ms) that are as much as two-
orders of magnitude greater. Since the deviations are typi-
cally short (one sample, in most cases), the median-based
methods perform better by rejecting them as unpredictable
noise.
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Figure 7. PCL-to-SDSC latency measurements.

5.5. Summary and analysis of network forecasting
performance

We show the forecasting accuracy for the PCL-to-
Caltech connectivity in tables 7 and 8, for the PCL-to-
Oregon connectivity in tables 9 and 10, and for the PCL-
to-NCSA in tables 11 and 12 (and we include the measure-
ment data as an appendix).

Again, we show the minimum mean square error and
mean percentage error values in each table using boldface
type. Tables 13 and 14 summarize the performance of the
best predictors for each network setting. Notice that GRAD
is the overall best predictor of throughput if mean square
error is used as an accuracy measure. It fails to yield
the lowest error for only the PCL-NCSA connection (ta-
ble 11), but for that connection it is ranked fifth, (not includ-

Table 7
PCL-to-Caltech forecaster error for throughput.

Predictor MSE MPE

RUN AVG 0.1434 1.506
SW AVG 0.0815 0.9187
LAST 0.1368 0.9955
ADAPT AVG 0.0912 1.018
MEDIAN 0.0936 0.7397
ADAPT MED 0.0928 0.7699
TRIM MEAN 0.0828 0.8107
GRAD 0.0808 0.9422
AR 0.1068 1.062
MIN MSE 0.0812 0.9321
MIN MPE 0.0927 0.7426

Table 8
PCL-to-Caltech forecaster error for latency.

Predictor MSE MPE

RUN AVG 7398 1.841
SW AVG 7679 1.666
LAST 13880 1.668
ADAPT AVG 7434 0.6922
MEDIAN 7626 0.2185
ADAPT MED 7637 0.2517
TRIM MEAN 7592 0.3962
GRAD 7462 1.628
AR 9778 2.275
MIN MSE 7471 1.537
MIN MPE 7626 0.2193

Table 9
PCL-to-Oregon forecaster error for throughput.

Predictor MSE MPE

RUN AVG 0.0427 2.409
SW AVG 0.0111 0.4234
LAST 0.0188 0.4868
ADAPT AVG 0.0132 0.6198
MEDIAN 0.0123 0.3970
ADAPT MED 0.0127 0.3955
TRIM MEAN 0.0113 0.4065
GRAD 0.0111 0.4708
AR 0.0132 0.4529
MIN MSE 0.0111 0.4480
MIN MPE 0.0129 0.4015

Table 10
PCL-to-Oregon forecaster error for latency.

Predictor MSE MPE

RUN AVG 181400 0.5380
SW AVG 187700 0.9994
LAST 362100 1.056
ADAPT AVG 180700 0.4229
MEDIAN 181400 0.1099
ADAPT MED 181700 0.1304
TRIM MEAN 180600 0.1937
GRAD 183200 0.9817
AR 202900 1.118
MIN MSE 182200 0.4380
MIN MPE 181500 0.1114

Table 11
PCL-to-NCSA forecaster error for throughput.

Predictor MSE MPE

RUN AVG 0.0104 2.461
SW AVG 0.0022 0.4956
LAST 0.0015 0.3287
ADAPT AVG 0.0041 0.9790
MEDIAN 0.0027 0.4908
ADAPT MED 0.0016 0.3808
TRIM MEAN 0.0023 0.4920
GRAD 0.0025 0.6557
AR 0.0016 0.3604
MIN MSE 0.0015 0.3429
MIN MPE 0.0015 0.3295

Table 12
PCL-to-NCSA forecaster error for latency.

Predictor MSE MPE

RUN AVG 60420 0.7080
SW AVG 59450 0.6764
LAST 115000 0.7181
ADAPT AVG 60260 0.3830
MEDIAN 61560 0.0701
ADAPT MED 61580 0.0727
TRIM MEAN 59730 0.2048
GRAD 58890 0.6719
AR 72570 0.9422
MIN MSE 60190 0.6937
MIN MPE 62370 0.0827
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Table 13
Summary of best forecasters for throughput.

Network Minimum MSE Minimum MPE
connection

PCL GRAD TRIM MEAN
PCL-SDSC GRAD ADAPT MED
PCL-Caltech GRAD MEDIAN
PCL-Oregon GRAD ADAPT MED
PCL-NCSA LAST LAST

Table 14
Summary of best forecasters for latency.

Network Minimum MSE Minimum MPE
connection

PCL GRAD MEDIAN
PCL-SDSC TRIM MEAN MEDIAN
PCL-Caltech RUN AVG MEDIAN
PCL-Oregon TRIM MEAN MEDIAN
PCL-NCSA GRAD MEDIAN

ing MIN MSE and MIN MPE in the ranking). In general,
though, the mean-based predictors tend to outperform the
median-based ones, for throughput time series in this study,
if mean square error is used to measure prediction accuracy.
Analogously, MEDIAN is the most accurate predictor of la-
tency, in terms of mean percentage error, for each set of
latency measurements. MIN MSE and MIN MPE correctly
track the leading predictor in each case without knowing
ahead of time which will be most successful.

Notice also that LAST is not a good predictor of network
performance (particularly of latency) except for the cross-
country Internet throughput measurements. In that experi-
ment, however, it performs best. We believe that this result
supports those reported in [2] which demonstrate the ability
of autoregressive models to correctly reflect aggregate traf-
fic patterns in certain wide-area network environments. In
particular, the authors analyze packet data taken from the
gateway between SDSC and the NSFNET backbone. The
PCL-to-NCSA TCP connection we monitored traverses this
gateway. Since we are also measuring the effects of proto-
col and buffer processing on each end of a connection, we
expected aggregate packet behavior to dominate in those
settings where network paths include many heavily con-
gested gateways. For the PCL-to-NCSA throughput mea-
surements, indeed, AR performs only slightly worse than
LAST as a predictor. The performance of AR is compet-
itive with the other forecasters, in terms of mean square
error, for the PCL-to-Oregon throughput series as well.

We summarize these results by noting that:

• if mean square error is the accuracy measure used to
judge the fitness of a forecasting method, a stochas-
tic gradient predictor is a good choice for forecasting
throughput over most Internet connections;

• if mean percentage error is used as an accuracy measure,
a sliding-window median is a good choice of forecasting
method for latency, given current Internet technology;

• the best predictor of each performance characteristic (la-
tency and throughput in this study) is, in general, not
obvious and varies from resource to resource;

• the dynamically-selecting predictive methods success-
fully track the best predictor in each case yielding fore-
cast error rates close to the minimum.

6. Conclusions and future work

To predict the performance of resources in a meta-
computing environment, we have developed the Network
Weather Service. It operates an arbitrary set of performance
sensors, and dynamically generates forecasts from the pe-
riodic readings it takes. Determining the most appropriate
forecasting method for each resource a priori is difficult.
Indeed, in the absence of a perfect generating model, the
best forecasting method for any particular resource may
change over time.

In this work, we illustrate the end-to-end TCP/IP
throughput and latency performance an application can ob-
tain between the UCSD Parallel Computation Lab, and a
variety of geographically dispersed computing sites. The
NWS is able to make dynamic short-term forecasts for both
of these communication characteristics, although the accu-
racy of the forecasts varies from site to site. More impor-
tantly, the system can correctly identify the best method
“on the fly” based on a running tabulation of prediction
error. Since we have designed the system to be extensible,
we can incorporate a multitude of techniques from which it
can choose the best for any given resource and any given
time.

Our work with the NWS is very much in its formative
stages. We plan to investigate how the system can incorpo-
rate modeling techniques which require a computationally-
intensive “fitting” phase. The ARIMA models described
in [2], the self-similarity analysis outlined in [26], and
the semi-nonparametric techniques discussed in [13,14],
all provide immediately promising avenues of investiga-
tion. We would like to discern the relationship between the
computational complexity devoted to making a forecast its
accuracy. We also plan to integrate other sensory mecha-
nisms such as those described in [6], and to investigate how
groups of forecasts may be composed to yield higher-level
performance characteristics.

As of this writing, second generation implementations of
the NWS are underway for the Globus/Nexus[9,15] and Le-
gion [17,25] metacomputing systems. These versions will
be initially deployed as part of the GUSTO (Globus Ubiq-
uitouS Testbed) [9] and DOCT (Distributed Object Com-
putational Testbed) [11] metacomputing testbeds. We plan
to use these implementations both to investigate metacom-
puting scheduling via AppLeS [1,3] and the development
of general quality-of-service mechanisms.
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Appendix

In this appendix, we include the throughput and latency
measurement data for TCP/IP communication streams be-
tween a Sun Sparc 10 in the UCSD PCL and Sun Sparc 5
in the PCL (figures 8 and 9), a DEC Alpha at the San
Diego Supercomputer Center (figures 10 and 11), a Sun
Hypersparc located at Caltech (figures 12 and 13), an SGI
PowerChallenge located at the University of Oregon (fig-
ures 14 and 15), and an SGI PowerChallenge located at

Figure 8. Intra-PLC throughput measurements.

Figure 9. Intra-PLC latency measurements.

Figure 10. PCL-to-SDCS throughput measurements.

Figure 11. PCL-to-SDCS latency measurements.

Figure 12. PCL-to-Caltech throughput measurements.

Figure 13. PCL-to-Caltech latency measurements.
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Figure 14. PCL-to-Oregon throughput measurements.

Figure 15. PCL-to-Oregon latency measurements.

Figure 16. PCL-to-NCSA throughput measurements.

Figure 17. PCL-to-NCSA latency measurements.

the National Center for Supercomputing Applications (fig-
ures 16 and 17). Note that scale of the magnitude differs
in each graph, and that the latency magnitudes shown in
these figures are plotted on a log scale.
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