Virtual Machine Failure Prediction using Log Analysis

MS Thesis Defense

Sukhyun Nam
Supervisor: Prof. James Won-Ki Hong
DPNM Lab, CSE, POSTECH, Korea
obiwan96@postech.ac.kr
Jun. 22, 2021
Table of Contents

◆ Introduction
◆ Background & Related work
◆ Methodology & Implementation
◆ Experiment & Evaluation
◆ Conclusion
Introduction
Network Function Virtualization (NFV)

- NFV technologies decouple functions (e.g. firewall, load balancer etc.) from hardware and move them to virtual servers.
- NFV reduced OPEX and CAPEX.
- Made difficult to monitor and take action on virtual machines (VMs) and server failures.
 - Faults in clouds system can take hours and days to fix [1]
Introduction

◆ VM Failure Prediction Tasks

- Predict the failures in VM in advance, to use in live migration of VNF before the failures occur to minimize service quality degradation
- Some of the failures have early errors or faults associated with
 - Errors or faults of computer equipment can be found in the log

◆ Challenges of Failure Prediction Tasks

- Complicated failure causes
- Complex failure-indicating signals
- Highly imbalanced data
Introduction

◆ Research Goal

❖ Predict at least one minute before a failure occurs using the logs that the VM outputs
 ● Failure is a state that the VM fails to network function
 ● Live migration takes an average of 45 seconds before based on VMs with size of 5GB on OpenStack
Background & Related work
Background

◆ Network Failure Prediction

❖ W. Ji et al (CCDC 2018) [2]
 ● Predict whether logs contain failure messages in wireless communication systems
 ● CNN showed best performance when experimenting with GRU, LSTM, CNN
 ● Accuracy 0.75 with gap 2000, accuracy 0.57 with gap 5000

❖ MING (ESEC/FSE 2018) [3]
 ● Predict node failure before 6 hours in cloud service
 ● Use temporal features (e.g. performance counters, resource usage) and spatial features (e.g. rack location, load balance group, update domain)
 ● Average recall of 0.63, precision of 0.92 and F1 score of 0.75

◆ Log based Anomaly Detection

❖ Deeplog (SIGSAC 2017) [4]
 ● Use deep neural network (DNN) to learn log patterns from normal execution
 ● Show F1 score of 0.98 in the OpenStack data set
Background

 Fault and Failure [5, 6]

- Mandelbug is a kind of bug whose activation and propagation are complex
 - Hard to reproduce
 - Takes longer time to fix than regular bugs
- In Linux, many failures related to networking are caused by Mandelbug [6]
- Two types of Mandelbug generate early symptoms
 - ARB (Aging Related Bug)
 - A kind of bugs that can cause an increasing failure rate and/or degraded performance, known as software aging
 - Symptoms: errors or faults due to overload (memory leaks or increase in total system runtime)
 - LAG
 - A kind of bugs that are non-aging related Mandelbug (NAM), but there exist a time lag between the activation of the bug and the occurrence of its failure
 - Symptoms: variety
Background

◆ CNN (Convolutional Neural Network)

 - Artificial neural networks specialized for learning that extract features without losing information from large amounts of data

 - Typically contains multiple convolution layers and pooling layers

 - The operation is simple and the number of parameters is small

 - CNN performs best in studies on sentence classification problems [7]
Methodology & Implementation
Overview of VM failure prediction model development

Data Generation
- Traffic Generation
 - Logs from VNF, systemd and kernel

Preprocessing
- Log Pre-processing
 - Sentence embedding within input window size

Model Generation
- Failure Tagging
 - Failure history
 - Failure info of time after gap
- CNN Model Training
- Model Evaluation

Input
- Sentence embedding within input window size

Output
Methodology

- Two sliding windows for input and output

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-21 02:09</td>
<td>autorefresh go cannot prepare auto</td>
</tr>
<tr>
<td>05-21 02:10</td>
<td>storehelpers go cannot refresh</td>
</tr>
<tr>
<td>05-21 02:11</td>
<td>our onion service received v and</td>
</tr>
<tr>
<td>05-21 02:12</td>
<td>snapd parts snapd deb build</td>
</tr>
<tr>
<td>05-21 02:13</td>
<td>stopped network service</td>
</tr>
<tr>
<td>05-21 02:14</td>
<td>tor has been idle for seconds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-21 02:09</td>
<td>Normal</td>
</tr>
<tr>
<td>05-21 02:10</td>
<td>Normal</td>
</tr>
<tr>
<td>05-21 02:11</td>
<td>Normal</td>
</tr>
<tr>
<td>05-21 02:12</td>
<td>Normal</td>
</tr>
<tr>
<td>05-21 02:13</td>
<td>Normal</td>
</tr>
<tr>
<td>05-21 02:14</td>
<td>Failure</td>
</tr>
</tbody>
</table>

Input window size

Gap

Prediction object window
Input

◆ Pre-processing

- Remove numbers and replace symbols with space
- Translate time info as timestamps and remove VM name, application name
- Delete duplicate log

```
May 21 02:10:13 225-2c-4 snapd[2463]: storehelpers.go:551: cannot refresh: snap has no updates available: "core18", "lxd", "snapd"
May 21 02:10:14 225-2c-4 snapd[2463]: autorefresh.go:479: auto-refresh: all snaps are up-to-date
```

```
<table>
<thead>
<tr>
<th>Timestamps</th>
<th>Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-21 02:10</td>
<td>storehelpers go cannot refresh snap has no</td>
</tr>
<tr>
<td></td>
<td>updates available core lxd snapd</td>
</tr>
<tr>
<td>05-21 02:10</td>
<td>autorefresh go auto refresh all snaps are</td>
</tr>
<tr>
<td></td>
<td>up to date</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Word Embedding

- Express a word as a dense vector with preserving the characteristics of the word
- Public word embedding is not appropriate for log analysis

Embedding Vectors for Log Corpus

- Generated with Google’s open-source project word2vec [8]
- Contains 265,452 words
- ex) most similar words with ‘err’
  - errors, over, dropped, rx, crc, tx, collisons, miss

Input

<Corpus>

- Fat cat sleep on the mat
- My dream is to be an astronaut.
- Astronauts are bound for space on a spacecraft.

<Sparse Representation>

<table>
<thead>
<tr>
<th>fat</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>...</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<Word embeddings in 2D>

Embedding learning

<Corpus>

<Sparse Representation>

<Word embeddings in 2D>
Output – Failure history

- State checker send periodic ping to each VM and tag state based on DFA
  - Tag as failure if VM reject ping for a minute
- Save failure history for each VM

![State Checking DFA]

 VM1
 Normal
 Normal
 Failure
 Normal
 Normal
 Failure
 Normal
 Normal
 Failure

 VM2
 Normal
 Normal
 Failure
 Failure
 Normal
 Normal
 Failure
 Failure
 Normal
 Normal
 Failure

 VM6
 Normal
 Normal

<Failure History>

Normal
Warning
Failure

Ping response
Ping rejection
Failure Occurs

Normal
Warning
Failure

<State Checking DFA>
Output - Pre-failure tagging

- CNNs are trained to extract features regardless of order
- Tags the states before the failure occurred to pre-failure rather than normal
- Tags pre-failure value during pre-failure size
- To enable pre-failure to be applied to loss, use KL Divergence-based custom loss
**Learning Algorithm**

- **CNN**

1. **Input Channel & Embedding**
   - root
   - post
   - failed
   - <UNK>
   - 
   - requests
   - <Sentence embedding>

2. **Convolutional Layer**
3. **Max Pooling and Concat layer**
4. **Fully connected layer with dropout and Sigmoid**

**Input Corpus**

- Log
  - Sliding
  - Window
  - Gap
  - Prediction Object

- Failure History
  - Normal
  - Failure

- Prediction Object
Experiment & Evaluation
Experimental setup

Controller Node

Monitorinig Node
- rsyslog server
- Pre-process
- Failure history
- syslog
- Application log
- VM states info

AI Node
- Log parsing module
- Word embedding
- Log embedding

Failure Prediction Module
- CNN model

Compute Node
- Log
- State Checker
- Ping
- VNF A
- Server
- Traffic
- Attack
- VNF F
- Client 1
- Client 6
- Output Label
- Label
Data Collection

- Generate multiple client-VNF-server chains
- Fault inject
  - In Microsoft cloud system, each day less than 0.1% of the nodes encounter failures [7]
  - Generate traffic, resource overload and external attack
Failure Data

- Collected 44 failures in 1 months
  - Server failures: 13
  - None symptom: 4
  - Failures with error before
    - ARB: 21
    - LAG: 6
    - 5 of them had a gap of more than 30 minutes
  - Total 22 number of failures were used for learning

<table>
<thead>
<tr>
<th>Type</th>
<th>gap</th>
<th>Application</th>
<th>log</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARB</td>
<td>5</td>
<td>systemd-timesyncd</td>
<td>Timed out waiting for reply from</td>
</tr>
<tr>
<td>ARB</td>
<td>2</td>
<td>apt-helper</td>
<td>Failed to retrieve unit state: Connection timed out</td>
</tr>
<tr>
<td>LAG</td>
<td>14</td>
<td>kernel</td>
<td>blk_update_request: I/O error, dev vda, sector op READ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>flags phys_seg prio class</td>
</tr>
<tr>
<td>LAG</td>
<td>1</td>
<td>kernel</td>
<td>fail to add MMCONFIG information, can't access extended</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCI configuration space under this bridge.</td>
</tr>
</tbody>
</table>
Experiments

◆ Unbalanced data

- Total 43,364 number of windows are made, but only 22 of them are tagged as failure
- Apply oversampling with 2 to failure data and random undersampling with 60 to normal data
- Apply class weight for loss function as the reciprocal number of each class (normal/failure) in data

◆ Test

- Shuffle the data and divide by a ratio of 8:2 as train set and test set
- Divide by a ratio of 8:2 again the train set as train set and validation set
## Evaluation

- **Pre-failure size and Pre-failure value test**
  - Use 5 minutes for gap and input window size
  - Without pre-failure tagging
    - Acc: 0.95, Rec: 0.14, F1: 0.25

### Evaluation Table

<table>
<thead>
<tr>
<th>Value (min)</th>
<th>Size (min)</th>
<th>0.5</th>
<th>0.65</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>Acc: 0.98, Rec: 0.75, F1: 0.60</td>
<td><strong>Acc: 0.95, Rec: 1.00, F1: 0.67</strong></td>
<td>Acc: 0.97, Rec: 0.60, F1: 0.55</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Acc: 0.97, Rec: 0.57, F1: 0.57</td>
<td>Acc: 0.91, Rec: 0.33, F1: 0.29</td>
<td>Acc: 0.96, Rec: 0.33, F1: 0.40</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Acc: 0.86, Rec: 0.75, F1: 0.44</td>
<td>Acc: 0.90, Rec: 0.40, F1: 0.25</td>
<td>Acc: 0.93, Rec: 0.50, F1: 0.36</td>
</tr>
</tbody>
</table>
Evaluation

- **Gap and input window size test**
  - Use 3 minutes for pre-failure size and 0.65 for pre-failure value
  - Predict failures before 5 minutes with 0.67 of F1 score

<table>
<thead>
<tr>
<th>Win (min)</th>
<th>Gap (min)</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acc: 0.93, Rec: 0.45, F1: 0.56</td>
<td>Acc: 0.94, Rec: 0.60, F1: 0.57</td>
<td>Acc: 0.88, Rec: 0.43, F1: 0.22</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Acc: 0.93, Rec: 0.37, F1: 0.46</td>
<td>Acc: 0.95, Rec: 0.33, F1: 0.43</td>
<td>Acc: 0.94, Rec: 0.57, F1: 0.44</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><strong>Acc: 0.95, Rec: 1.00, F1: 0.67</strong></td>
<td>Acc: 0.95, Rec: 0.33, F1: 0.36</td>
<td>Acc: 0.82, Rec: 0.71, F1: 0.26</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Acc: 0.93, Rec: 1.00, F1: 0.17</td>
<td>Acc: 0.91, Rec: 0.43, F1: 0.35</td>
<td>Acc: 0.92, Rec: 0.40, F1: 0.24</td>
<td></td>
</tr>
</tbody>
</table>

LOG

Input Sequence

Input window size

gap

Prediction object ->
Label

Failure history

- **Evaluation Table**
- **Win (min)**: Indicates the window size.
- **Gap (min)**: Indicates the gap size.
- **Accuracy (Acc)**, **Recall (Rec)**, and **F1 score** are provided for each combination of window size and gap.
Performance Comparison with other models

- Use 5 minutes as input window size, gap and pre-failure size, 0.65 as pre-failure value
- Show angular line because test data is not large (num : 129)
- CNN show best performance
Conclusion
Summary

- We propose a model that analyze logs extracted from VMs which execute VNFs and determine whether failures will occur in the future
- Use pre-failure tagging method to get higher performance
- Could predict failures before 5 minutes with 0.67 of F1 score

Future work

- Gather more failures data
- Learn about failures that occur on the server
- Use CNN’s outputs as input of RNN
- Apply to container based environment
감사합니다
Publications (1/2)

◆ International Conference Papers (3, 1 under review)


◆ Domestic Conference Papers (5)


5. 남석현, 현종환, 유재형, 홍원기, "네트워크 텔레메트리를 활용한 머신 러닝 기반 네트워크 이상 탐지 기법 연구", KNOM Conference 2019, Daegu, Korea, May. 30, 2019, pp. 75-77.

◆ Domestic Patents (2)


Appendix. Loss with Pre-failure Tagging

◆ KL Divergence
  - Measure the different degrees of the two probability distributions
  - \( KL(p|q) := -\sum_{i=1}^{N} p_i \log q_i - (-\sum_{i=1}^{N} p_i \log p_i) = -\sum_{i=1}^{N} p_i \log \left( \frac{q_i}{p_i} \right) \) (N is # of classes)
  - Use custom loss based on KL divergence to learn even for pre-failure value

- Custom loss = \( y_{true} \times \text{classweight} \times \log \left( \frac{y_{true}}{y_{pred}} \right) + (1 - y_{true}) \times \log \left( \frac{1 - y_{true}}{1 - y_{pred}} \right) \)

◆ Keras KL Divergence loss function
  - \( loss = y_{true} \times \log \left( \frac{y_{true}}{y_{pred}} \right) \)
  - return 0 for all normal state (since \( y_{true} \) is 0)

◆ Cross-entropy loss function
  - \( Cross - entropy = -\sum_{i=1}^{N} p_i \log q_i \)
  - Only work when prediction object is 0 either 1


